
hyperbox-brain
Release 0.1.1

Thanh Tung Khuat and Bogdan Gabrys

Jun 12, 2023

USER GUIDES

1 Introduction 3
1.1 Installation . 3
1.2 Features . 5
1.3 Available models . 9
1.4 Quickstart . 11
1.5 Contributing . 13
1.6 About hyperbox-brain . 23

2 API Reference 25
2.1 utilitity functions . 25
2.2 base . 55
2.3 mixed-data learners . 68
2.4 batch learners . 91
2.5 ensemble learners . 99
2.6 incremental learners . 131
2.7 multigranular learners . 151
2.8 Tutorials . 163

3 Indices and tables 373

Bibliography 375

Python Module Index 379

Index 381

i

ii

hyperbox-brain, Release 0.1.1

A scikit-learn compatible hyperbox-based machine learning library in Python.

USER GUIDES 1

https://uts-caslab.github.io/hyperbox-brain/

hyperbox-brain, Release 0.1.1

2 USER GUIDES

CHAPTER

ONE

INTRODUCTION

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on
top of scikit-learn and is distributed under the GPL-3.0 license.

The project was started in 2018 by Prof. Bogdan Gabrys and Dr. Thanh Tung Khuat at the Complex Adaptive Systems
Lab - The University of Technology Sydney. This project is a core module aiming to the formulation of explainable
life-long learning systems in near future.

If you use hyperbox-brain, please use this BibTeX entry:

@article{khga23,
title={hyperbox-brain: A Python toolbox for hyperbox-based machine learning␣

→˓algorithms},
author={Khuat, Thanh Tung and Gabrys, Bogdan},
journal={SoftwareX},
volume={23},
pages={101425},
year={2023},
url={https://doi.org/10.1016/j.softx.2023.101425},
publisher={Elsevier}

}

1.1 Installation

• Dependencies

• conda installation

• pip installation

• From source

– Using conda

– Using pip

• Testing

3

https://profiles.uts.edu.au/Bogdan.Gabrys
https://thanhtung09t2.wixsite.com/home

hyperbox-brain, Release 0.1.1

1.1.1 Dependencies

Hyperbox-brain requires:

• Python (>= 3.6)

• Scikit-learn (>= 0.24.0)

• NumPy (>= 1.14.6)

• SciPy (>= 1.1.0)

• joblib (>= 0.11)

• threadpoolctl (>= 2.0.0)

• Pandas (>= 0.25.0)

Hyperbox-brain plotting capabilities (i.e., functions start with show_ or draw_) require Matplotlib (>= 2.2.3) and Plotly
(>= 4.10.0). For running the examples Matplotlib >= 2.2.3 and Plotly >= 4.10.0 are required. A few examples require
pandas >= 0.25.0.

1.1.2 conda installation

You need a working conda installation. Get the correct miniconda for your system from here.

To install hyperbox-brain, you need to use the conda-forge channel:

conda install -c conda-forge hyperbox-brain

We recommend to use a conda virtual environment.

1.1.3 pip installation

If you already have a working installation of numpy, scipy, pandas, matplotlib, and scikit-learn, the easiest way to install
hyperbox-brain is using pip:

pip install -U hyperbox-brain

Again, we recommend to use a virtual environment for this.

1.1.4 From source

If you would like to use the most recent additions to hyperbox-brain or help development, you should install hyperbox-
brain from source.

4 Chapter 1. Introduction

https://conda.io/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.python.org/3/tutorial/venv.html

hyperbox-brain, Release 0.1.1

Using conda

To install hyperbox-brain from source using conda, proceed as follows:

git clone https://github.com/UTS-CASLab/hyperbox-brain.git
cd hyperbox-brain
conda env create
source activate hyperbox-brain
pip install .

Using pip

For pip, follow these instructions instead:

git clone https://github.com/UTS-CASLab/hyperbox-brain.git
cd hyperbox-brain
create and activate a virtual environment
pip install -r requirements.txt
install hyperbox-brain version for your system (see below)
pip install .

1.1.5 Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >=
5.0.1 installed):

pytest hbbrain

1.2 Features

The hyper-box brain toolbox has the following main characteristics:

1.2.1 Types of input variables

The hyperbox-brain library separates learning models for continuous variables only and mixed-attribute data.

1.2.2 Incremental learning

Incremental (online) learning models are created incrementally and are updated continuously. They are appropriate
for big data applications where real-time response is an important requirement. These learning models generate a new
hyperbox or expand an existing hyperbox to cover each incoming input pattern.

1.2. Features 5

hyperbox-brain, Release 0.1.1

1.2.3 Agglomerative learning

Agglomerative (batch) learning models are trained using all training data available at the training time. They use
the aggregation of existing hyperboxes to form new larger sized hyperboxes based on the similarity measures among
hyperboxes.

1.2.4 Ensemble learning

Ensemble models in the hyperbox-brain toolbox build a set of hyperbox-based learners from a subset of training samples
or a subset of both training samples and features. Training subsets of base learners can be formed by stratified random
subsampling, resampling, or class-balanced random subsampling. The final predicted results of an ensemble model are
an aggregation of predictions from all base learners based on a majority voting mechanism. An intersting characteristic
of hyperbox-based models is resulting hyperboxes from all base learners or decision trees can be merged to formulate
a single model. This contributes to increasing the explainability of the estimator while still taking advantage of strong
points of ensemble models.

1.2.5 Multigranularity learning

Multi-granularity learning algorithms can construct classifiers from multiresolution hierarchical granular representa-
tions using hyperbox fuzzy sets. This algorithm forms a series of granular inferences hierarchically through many levels
of abstraction. An attractive characteristic of these classifiers is that they can maintain a high accuracy in comparison to
other fuzzy min-max models at a low degree of granularity based on reusing the knowledge learned from lower levels
of abstraction.

1.2.6 Learning from both labelled and unlabelled data

One of the exciting features of learning algorithms for the general fuzzy min-max neural network is the capability of
creating classification boundaries among known classes and clustering data and representing them as hyperboxes in the
case that labels are not available. Unlabelled hyperboxes is then possible to be labelled on the basis of the evidence of
next incoming input samples. As a result, the GFMMNN models have the ability to learn from the mixed labelled and
unlabelled datasets in a native way.

1.2.7 Ability to directly process missing data

Learning algorithms for the general fuzzy min-max neural network supported by the library may classify inputs with
missing data directly without the need for replacing or imputing missing values as in other classifiers.

1.2.8 Continual learning ability of new classes

Incremental learning algorithms of hyperbox-based models in the hyperbox-brain library can grow and accommodate
new classes of data without retraining the whole classifier. Incremental learning algorithms themselves can generate
new hyperboxes to represent clusters of new data with potentially new class labels both in the middle of normal training
procedure and in the operating time where training has been finished. This property is a key feature for smart life-long
learning systems.

6 Chapter 1. Introduction

hyperbox-brain, Release 0.1.1

1.2.9 Data editing and pruning approaches

By combining the repeated cross-validation methods provided by scikit-learn and hyperbox-based learning algorithms,
evidence from training multiple models can be deployed for identifying which data points from the original training set
or the hyperboxes from the generated multiple models should be retained and those that should be edited out or pruned
before further processing.

1.2.10 Scikit-learn compatible estimators

The estimators in hyperbox-brain is compatible with the well-known scikit-learn toolbox. Therefore, it is possible
to use hyperbox-based estimators in scikit-learn pipelines, scikit-learn hyperparameter optimizers (e.g., grid search
and random search), and scikit-learn model validation (e.g., cross-validation scores). In addition, the hyperbox-brain
toolbox can be used within hyperparameter optimisation libraries built on top of scikit-learn such as hyperopt.

1.2.11 Explainability of predicted results

The hyperbox-brain library can provide the explanation of predicted results via visualisation. This toolbox provides the
visualisation of existing hyperboxes and the decision boundaries of a trained hyperbox-based model if input features
are two-dimensional features:

../_static/hyperboxes_and_boundaries.png

For two-dimensional data, the toolbox also provides the reason behind the class prediction for each input sample by
showing representative hyperboxes for each class which join the prediction process of the trained model for an given
input pattern:

1.2. Features 7

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
http://hyperopt.github.io/hyperopt/

hyperbox-brain, Release 0.1.1

../_static/hyperboxes_explanation.png

For input patterns with two or more dimensions, the hyperbox-brain toolbox uses a parallel coordinates graph to display
representative hyperboxes for each class which join the prediction process of the trained model for an given input pattern:

../_static/parallel_coord_explanation.PNG

8 Chapter 1. Introduction

hyperbox-brain, Release 0.1.1

1.2.12 Easy to use

Hyperbox-brain is designed for users with any experience level. Learning models are easy to create, setup, and run.
Existing methods are easy to modify and extend.

1.2.13 Jupyter notebooks

The learning models in the hyperbox-brain toolbox can be easily retrieved in notebooks in the Jupyter or JupyterLab
environments.

In order to display plots from hyperbox-brain within a Jupyter Notebook we need to define the proper mathplotlib
backend to use. This can be performed by including the following magic command at the beginning of the Notebook:

%matplotlib notebook

JupyterLab is the next-generation user interface for Jupyter, and it may display interactive plots with some caveats. If
you use JupyterLab then the current solution is to use the jupyter-matplotlib extension:

%matplotlib widget

Examples regarding how to use the classes and functions in the hyperbox-brain toolbox have been written under the
form of Jupyter notebooks.

1.3 Available models

The following table summarises the supported hyperbox-based learning algorithms in this toolbox.

1.3. Available models 9

https://jupyter-notebook.readthedocs.io/en/latest/
https://github.com/jupyterlab/jupyterlab
https://github.com/matplotlib/ipympl
https://github.com/UTS-CASLab/hyperbox-brain/tree/main/examples

hyperbox-brain, Release 0.1.1

Model Feature
type

Model
type

Learn-
ing
type

Implementation Exam-
ple

Refer-
ences

EIOL-GFMM Mixed Single Instance-
incremental

ExtendedImprove-
dOnlineGFMM

Note-
book

1

Freq-Cat-Onln-
GFMM

Mixed Single Batch-
incremental

FreqCatOnlineGFMM Note-
book

2

OneHot-Onln-
GFMM

Mixed Single Batch-
incremental

OneHotOnlineGFMM Note-
book

Page 11, 2

Onln-GFMM Contin-
uous

Single Instance-
incremental

OnlineGFMM Note-
book

3,4

IOL-GFMM Contin-
uous

Single Instance-
incremental

ImprovedOnlineGFMM Note-
book

5,Page 11, 4

FMNN Contin-
uous

Single Instance-
incremental

FMNNClassifier Note-
book

6

EFMNN Contin-
uous

Single Instance-
incremental

EFMNNClassifier Note-
book

7

KNEFMNN Contin-
uous

Single Instance-
incremental

KNEFMNNClassifier Note-
book

8

RFMNN Contin-
uous

Single Instance-
incremental

RFMNNClassifier Note-
book

9

AGGLO-SM Contin-
uous

Single Batch AgglomerativeLearningGFMM Note-
book

10,Page 11, 4

AGGLO-2 Contin-
uous

Single Batch AccelAgglomerativeLearning-
GFMM

Note-
book

Page 11, 10,Page 11, 4

MRHGRC Contin-
uous

Granu-
larity

Multi-
Granular
learning

MultiGranularGFMM Note-
book

11

Decision-level Bag-
ging of hyperbox-
based learners

Contin-
uous

Combi-
nation

Ensem-
ble

DecisionCombinationBagging Note-
book

12

Decision-level Bag-
ging of hyperbox-
based learners with
hyper-parameter op-
timisation

Contin-
uous

Combi-
nation

Ensem-
ble

DecisionCombinationCrossVal-
Bagging

Note-
book

Model-level Bag-
ging of hyperbox-
based learners

Contin-
uous

Combi-
nation

Ensem-
ble

ModelCombinationBagging Note-
book

Page 11, 12

Model-level Bag-
ging of hyperbox-
based learners with
hyper-parameter
optimisation

Contin-
uous

Combi-
nation

Ensem-
ble

ModelCombinationCrossVal-
Bagging

Note-
book

Random hyperboxes Contin-
uous

Combi-
nation

Ensem-
ble

RandomHyperboxesClassifier Note-
book

13

Random hyper-
boxes with hyper-
parameter opti-
misation for base
learners

Contin-
uous

Combi-
nation

Ensem-
ble

CrossValRandomHyperbox-
esClassifier

Note-
book

1

10 Chapter 1. Introduction

https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/mixed_data/eiol_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/mixed_data/eiol_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/mixed_data/eiol_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/mixed_data/eiol_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/mixed_data/freq_cat_onln_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/mixed_data/freq_cat_onln_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/mixed_data/freq_cat_onln_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/mixed_data/onehot_onln_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/mixed_data/onehot_onln_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/mixed_data/onehot_onln_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/incremental_learner/onln_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/onln_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/onln_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/incremental_learner/iol_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/iol_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/iol_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/incremental_learner/fmnn.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/fmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/fmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/incremental_learner/efmnn.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/efmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/efmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/incremental_learner/knefmnn.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/knefmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/knefmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/incremental_learner/rfmnn.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/rfmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/incremental_learner/rfmnn_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/batch_learner/agglo_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/batch_learner/agglo_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/batch_learner/agglo_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/batch_learner/accel_agglo_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/batch_learner/accel_agglo_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/batch_learner/accel_agglo_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/batch_learner/accel_agglo_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/multigranular_learner/multi_resolution_gfmm.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/multigranular_learner/multi_resolution_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/multigranular_learner/multi_resolution_gfmm_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/decision_comb_bagging.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/decision_comb_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/decision_comb_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/decision_comb_cross_val_bagging.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/decision_comb_cross_val_bagging.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/decision_comb_cross_val_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/decision_comb_cross_val_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/model_comb_bagging.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/model_comb_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/model_comb_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/model_comb_cross_val_bagging.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/model_comb_cross_val_bagging.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/model_comb_cross_val_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/model_comb_cross_val_bagging_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/random_hyperboxes.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/random_hyperboxes_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/random_hyperboxes_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/cross_val_random_hyperboxes.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/hbbrain/numerical_data/ensemble_learner/cross_val_random_hyperboxes.py
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/cross_val_random_hyperboxes_general_use.ipynb
https://github.com/UTS-CASLab/hyperbox-brain/blob/main/examples/numerical_data/ensemble_learner/cross_val_random_hyperboxes_general_use.ipynb

hyperbox-brain, Release 0.1.1

1.3.1 References

1.4 Quickstart

1.4.1 Training a model

Simply use an estimator by initialising, fitting and predicting:

from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM
Load dataset
X, y = load_iris(return_X_y=True)
Normalise features into the range of [0, 1] because hyperbox-based models only work in␣
→˓a unit range
scaler = MinMaxScaler()
scaler.fit(X)
X = scaler.transform(X)
Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Training a model
clf = OnlineGFMM(theta=0.1).fit(X_train, y_train)
Make prediction
y_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

1.4.2 In an sklearn Pipeline

Using hyperbox-based estimators in a sklearn Pipeline:

from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

Load dataset
X, y = load_iris(return_X_y=True)
Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Create a GFMM model
onln_gfmm_clf = OnlineGFMM(theta=0.1)
Create a pipeline
pipe = Pipeline([

('scaler', MinMaxScaler()),
('onln_gfmm', onln_gfmm_clf)

])
(continues on next page)

T. T. Khuat and B. Gabrys “An Online Learning Algorithm for a Neuro-Fuzzy Classifier with Mixed-Attribute Data”, ArXiv preprint,
arXiv:2009.14670, 2020.

2

T. T. Khuat and B. Gabrys “An in-depth comparison of methods handling mixed-attribute data for general fuzzy min-max neural network”,
Neurocomputing, vol 464, pp. 175-202, 2021.

3

B. Gabrys and A. Bargiela, “General fuzzy min-max neural network for clustering and classification”, IEEE Transactions on Neural Networks,
vol. 11, no. 3, pp. 769-783, 2000.

4

T. T. Khuat and B. Gabrys, “Accelerated learning algorithms of general fuzzy min-max neural network using a novel hyperbox selection
rule”, Information Sciences, vol. 547, pp. 887-909, 2021.

5

T. T. Khuat, F. Chen, and B. Gabrys, “An improved online learning algorithm for general fuzzy min-max neural network”, in Proceedings
of the International Joint Conference on Neural Networks (IJCNN), pp. 1-9, 2020.

6

P. Simpson, “Fuzzy min—max neural networks—Part 1: Classification”, IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 776-786,
1992.

7

M. Mohammed and C. P. Lim, “An enhanced fuzzy min-max neural network for pattern classification”, IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 3, pp. 417-429, 2014.

8

M. Mohammed and C. P. Lim, “Improving the Fuzzy Min-Max neural network with a k-nearest hyperbox expansion rule for pattern classifica-
tion”, Applied Soft Computing, vol. 52, pp. 135-145, 2017.

9

O. N. Al-Sayaydeh, M. F. Mohammed, E. Alhroob, H. Tao, and C. P. Lim, “A refined fuzzy min-max neural network with new learning
procedures for pattern classification”, IEEE Transactions on Fuzzy Systems, vol. 28, no. 10, pp. 2480-2494, 2019.

10

B. Gabrys, “Agglomerative learning algorithms for general fuzzy min-max neural network”, Journal of VLSI Signal Processing Systems for
Signal, Image and Video Technology, vol. 32, no. 1, pp. 67-82, 2002.

11 T.T. Khuat, F. Chen, and B. Gabrys, “An Effective Multiresolution Hierarchical Granular Representation Based Classifier Using General Fuzzy
Min-Max Neural Network”, IEEE Transactions on Fuzzy Systems, vol. 29, no. 2, pp. 427-441, 2021.

12

B. Gabrys, “Combining neuro-fuzzy classifiers for improved generalisation and reliability”, in Proceedings of the 2002 International Joint
Conference on Neural Networks, vol. 3, pp. 2410-2415, 2002.

13

T. T. Khuat and B. Gabrys, “Random Hyperboxes”, IEEE Transactions on Neural Networks and Learning Systems, 2021.

1.4. Quickstart 11

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://arxiv.org/abs/2009.14670
https://doi.org/10.1016/j.neucom.2021.08.083
https://doi.org/10.1109/72.846747
https://doi.org/10.1016/j.ins.2020.08.046
https://doi.org/10.1016/j.ins.2020.08.046
https://doi.org/10.1109/IJCNN48605.2020.9207534
https://doi.org/10.1109/72.159066
https://doi.org/10.1109/TNNLS.2014.2315214
https://doi.org/10.1016/j.asoc.2016.12.001
https://doi.org/10.1016/j.asoc.2016.12.001
https://doi.org/10.1109/TFUZZ.2019.2939975
https://doi.org/10.1109/TFUZZ.2019.2939975
https://link.springer.com/article/10.1023/A:1016315401940
https://doi.org/10.1109/TFUZZ.2019.2956917
https://doi.org/10.1109/TFUZZ.2019.2956917
https://doi.org/10.1109/IJCNN.2002.1007519
https://doi.org/10.1109/TNNLS.2021.3104896

hyperbox-brain, Release 0.1.1

(continued from previous page)

Training
pipe.fit(X_train, y_train)
Make prediction
acc = pipe.score(X_test, y_test)
print(f'Testing accuracy = {acc * 100: .2f}%')

1.4.3 Hyper-parameter search

This example shows how to use hyperbox-based models with sklearn random search:

from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.random_hyperboxes import␣
→˓RandomHyperboxesClassifier
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

Load dataset
X, y = load_breast_cancer(return_X_y=True)
Normalise features into the range of [0, 1] because hyperbox-based models only work in␣
→˓a unit range
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Initialise search ranges for hyper-parameters
parameters = {'n_estimators': [20, 30, 50, 100, 200, 500],

'max_samples': [0.2, 0.3, 0.4, 0.5, 0.6],
'max_features' : [0.2, 0.3, 0.4, 0.5, 0.6],
'class_balanced' : [True, False],
'feature_balanced' : [True, False],
'n_jobs' : [4],
'random_state' : [0],
'base_estimator__theta' : np.arange(0.05, 0.61, 0.05),
'base_estimator__gamma' : [0.5, 1, 2, 4, 8, 16]}

Init base learner. This example uses the original online learning algorithm to train a␣
→˓GFMM classifier
base_estimator = OnlineGFMM()
Using random search with only 40 random combinations of parameters
random_hyperboxes_clf = RandomHyperboxesClassifier(base_estimator=base_estimator)
clf_rd_search = RandomizedSearchCV(random_hyperboxes_clf, parameters, n_iter=40, cv=5,␣
→˓random_state=0)
Fit model
clf_rd_search.fit(X_train, y_train)
Print out best scores and hyper-parameters
print("Best average score = ", clf_rd_search.best_score_)
print("Best params: ", clf_rd_search.best_params_)
Using the best model to make prediction
best_gfmm_rd_search = clf_rd_search.best_estimator_

(continues on next page)

12 Chapter 1. Introduction

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

hyperbox-brain, Release 0.1.1

(continued from previous page)

y_pred_rd_search = best_gfmm_rd_search.predict(X_test)
acc_rd_search = accuracy_score(y_test, y_pred_rd_search)
print(f'Accuracy (random-search) = {acc_rd_search * 100: .2f}%')

1.5 Contributing

We welcome contributions from the community. Here you will find information to start contributing to hyperbox-
brain.

The project is hosted on https://github.com/UTS-CASLab/hyperbox-brain

Our community, our values

We are a community based on openness and friendly, politeness, constructive discussions.

We aspire to treat everybody equally, and value their contributions. We are particularly seeking people from
underrepresented backgrounds in Open Source Software and Hyperbox-based Machine Learning in particular to
join and contribute their expertise and experience.

Decisions are made based on technical merit and consensus.

Code is not the only way to help the project. Reviewing pull requests, answering questions to help others on mailing
lists or issues, organising and running tutorials, working on the website, enhancing the quality of documentation,
are all priceless contributions.

We abide by the principles of openness, respect, and consideration of others of the Python Software Foundation:
https://www.python.org/psf/codeofconduct/

In case you experience issues using this package, do not hesitate to submit a ticket to the GitHub issue tracker. You are
also welcome to post feature requests or pull requests.

1.5.1 Ways to contribute

There are various methods to contribute to hyperbox-brain, with the most common ones being contribution of code or
documentation to the project. Enhancing the documentation is no less important than enhancing the library itself. If
you find a typo in the documentation, or have made improvements, do not hesitate to send an email to the mailing list
or preferably submit a GitHub pull request. Full documentation can be found under the doc/ directory.

But there are many other ways to help. In particular helping to improve, triage, and investigate issues and reviewing
other developers’ pull requests are very valuable contributions that decrease the burden on the project maintainers.

Another way to contribute is to report issues you’re facing, and give a “thumbs up” on issues that others reported and
that are relevant to you. It also helps us if you spread the word: reference the project from your blog and articles, link
to it from your website, or simply star to say “I use it”:

In case a contribution/issue involves changes to the API principles or changes to dependencies or supported versions,
it must be essential to submit as a pull-request and send an email to inform the project owner.

1.5. Contributing 13

https://github.com/UTS-CASLab/hyperbox-brain
https://www.python.org/psf/codeofconduct/
https://github.com/UTS-CASLab/hyperbox-brain/issues

hyperbox-brain, Release 0.1.1

1.5.2 Submitting a bug report or a feature request

We use GitHub issues to track all bugs and feature requests; feel free to open an issue if you have found a bug or wish
to see a feature implemented.

In case you experience issues using this package, do not hesitate to submit a ticket to the Bug Tracker. You are also
welcome to post feature requests or pull requests.

It is recommended to check that your issue complies with the following rules before submitting:

• Verify that your issue is not being currently addressed by other issues or pull requests.

• If you are submitting an algorithm or feature request, please verify the algorithm carefully and discuss it with
the governance board.

• If you are submitting a bug report, we strongly encourage you to follow the guidelines in How to make a good
bug report.

How to make a good bug report

When you submit an issue to Github, please do your best to follow these guidelines! This will make it a lot easier to
provide you with good feedback:

• The ideal bug report contains a description of how to reproduce this bug via code snippet. By doing this way,
anyone can try to reproduce the bug easily (see this for more details). If your snippet is longer than around 50
lines, please link to a gist or a github repo.

• If it is not feasible to include a reproducible snippet, please be specific about what estimators and/or functions
are involved and the shape of the data.

• If an exception is raised, please provide the full traceback.

• Please include your operating system type and version number, as well as your Python, hyperbox-brain,
hyperbox-brain, joblib, numpy, matplotlib, plotly, and pandas versions. This information can be found by
running the following code snippet:

>>> import hbbrain
>>> hbbrain.show_versions()

• Please ensure all code snippets and error messages are formatted in appropriate code blocks. See Creating
and highlighting code blocks for more details.

1.5.3 Contributing code

Note: To avoid duplicating work, it is highly recommended that you search through the issue tracker and the PR list.
If in doubt about duplicated work, or if you want to work on a non-trivial feature, it’s recommended to first open an
issue in the issue tracker to get some feedbacks from core developers.

One easy way to find an issue to work on is by applying the “help wanted” label in your search. This lists all the issues
that have been unclaimed so far. In order to claim an issue for yourself, please comment exactly /take on it to assign
the issue to you.

14 Chapter 1. Introduction

https://github.com/UTS-CASLab/hyperbox-brain/issues
https://github.com/UTS-CASLab/hyperbox-brain/issues?q=
https://github.com/UTS-CASLab/hyperbox-brain/pulls?q=
https://github.com/UTS-CASLab/hyperbox-brain/issues
https://stackoverflow.com/help/mcve
https://gist.github.com
https://help.github.com/articles/creating-and-highlighting-code-blocks
https://help.github.com/articles/creating-and-highlighting-code-blocks
https://github.com/UTS-CASLab/hyperbox-brain/issues
https://github.com/UTS-CASLab/hyperbox-brain/pulls
https://github.com/UTS-CASLab/hyperbox-brain/issues

hyperbox-brain, Release 0.1.1

How to contribute

The best method to contribute to hyperbox-brain is to fork the main repository on GitHub, then submit a “pull request”
(PR).

In the first few steps, we explain how to locally install hyperbox-brain, and how to set up your git repository:

1. Create an account on GitHub if you do not already have one.

2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code
under your account on the GitHub user account. For more details on how to fork a repository see this guide.

3. Clone your fork of the hyperbox-brain repo from your GitHub account to your local disk:

git clone git@github.com:YourLogin/hyperbox-brain.git # add --depth 1 if your␣
→˓connection is slow
cd hyperbox-brain

4. Follow the steps in the installation from source to build hyperbox-brain in development mode and return to this
document.

5. Install the development dependencies:

pip install pytest pytest-cov flake8 mypy numpydoc black==22.3.0

6. Add the upstream remote. This saves a reference to the main hyperbox-brain repository, which you can use to
keep your repository synchronized with the latest changes:

git remote add upstream git@github.com:UTS-CASLab/hyperbox-brain.git

7. Check that the upstream and origin remote aliases are configured correctly by running git remote -v which should
display:

origin git@github.com:YourLogin/hyperbox-brain.git (fetch)
origin git@github.com:YourLogin/hyperbox-brain.git (push)
upstream git@github.com:UTS-CASLab/hyperbox-brain.git (fetch)
upstream git@github.com:UTS-CASLab/hyperbox-brain.git (push)

You should now have a working installation of hyperbox-brain, and your git repository properly configured. The
next steps now describe the process of modifying code and submitting a PR.

8. Synchronize your main branch with the upstream/main branch, more details on GitHub Docs:

git checkout main
git fetch upstream
git merge upstream/main

9. Create a feature branch to hold your development changes:

git checkout -b my_feature

and start making changes. Always use a feature branch. It’s good practice to never work on the main branch!

10. (Optional) Install pre-commit to run code style checks before each commit:

pip install pre-commit
pre-commit install

pre-commit checks can be disabled for a particular commit with git commit -n.

1.5. Contributing 15

https://github.com/UTS-CASLab/hyperbox-brain/
https://github.com/join
https://github.com/UTS-CASLab/hyperbox-brain
https://help.github.com/articles/fork-a-repo/
https://hyperbox-brain.readthedocs.io/en/latest/user/installation.html#from-source
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork
https://pre-commit.com/#install

hyperbox-brain, Release 0.1.1

11. Develop the feature on your feature branch on your computer, using Git to do the version control. When you’re
done editing, add changed files using git add and then git commit:

git add modified_files
git commit

to record your changes in Git, then push the changes to your GitHub account with:

git push -u origin my_feature

12. Follow these instructions to create a pull request from your fork. This will send an email to the committers. You
may want to consider sending an email to the mailing list for more visibility.

It is often helpful to keep your local feature branch synchronized with the latest changes of the main hyperbox-
brain repository:

git fetch upstream
git merge upstream/main

Subsequently, you might need to solve the conflicts. You can refer to the Git documentation related to resolving
merge conflict using the command line.

Learning git:

The Git documentation and http://try.github.io are excellent resources to get started with git, and understanding
all of the commands shown here.

Pull request checklist

Before a PR can be merged, it needs to be approved by two core developers. Please prefix the title of your pull request
with [MRG] if the contribution is complete and should be subjected to a detailed review. An incomplete contribution
– where you expect to do more work before receiving a full review – should be prefixed [WIP] (to indicate a work in
progress) and changed to [MRG] when it matures. WIPs may be useful to: indicate you are working on something to
avoid duplicated work, request broad review of functionality or API, or seek collaborators. WIPs often benefit from
the inclusion of a task list in the PR description.

In order to ease the reviewing process, we recommend that your contribution complies with the following rules before
marking a PR as [MRG]. The bolded ones are especially important:

1. Give your pull request a helpful title that summarizes what your contribution does. This title will often become
the commit message once merged so it should summarize your contribution for posterity. In some cases “Fix
<ISSUE TITLE>” is enough. “Fix #<ISSUE NUMBER>” is never a good title.

2. Make sure your code passes the tests. The whole test suite can be run with pytest, but it is usually not recom-
mended since it takes a long time. It is often enough to only run the test related to your changes: for example, if
you changed something in hbbrain/mixed_data/eiol_gfmm.py, running the following commands will usually be
enough:

• pytest hbbrain/mixed_data/eiol_gfmm.py to make sure the doctest examples are correct.

• pytest hbbrain/mixed_data/tests/test_eiol_gfmm.py to run the tests specific to the file.

• pytest hbbrain/mixed_data to test the whole mixed_data module

• pytest docs/api/mixed_data.rst and pytest docs/tutorials/mixed_data_learner.rst to make sure the user guide
examples are correct.

16 Chapter 1. Introduction

https://help.github.com/articles/creating-a-pull-request-from-a-fork
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://git-scm.com/documentation
http://try.github.io
https://github.com/blog/1375-task-lists-in-gfm-issues-pulls-comments

hyperbox-brain, Release 0.1.1

For guidelines on how to use pytest efficiently, see the document.

3. Make sure your code is properly commented and documented, and make sure the documentation renders
properly. To build the documentation, please refer to our Documentation guidelines.

4. Tests are necessary for enhancements to be accepted. Bug-fixes or new features should be provided with non-
regression tests. These tests verify the correct behavior of the fix or feature. In this manner, further modifications
on the code base are granted to be consistent with the desired behavior. In the case of bug fixes, at the time of
the PR, the non-regression tests should fail for the code base in the main branch and pass for the PR code.

5. Run black to auto-format your code.

black .

See black’s editor integration documentation to configure your editor to run black.

6. Make sure that your PR does not add PEP8 violations. To check the code that you changed, you can run the
following command:

git diff upstream/main -u -- "*.py" | flake8 --diff

or make flake8-diff which should work on unix-like system.

7. Follow the Coding guidelines.

8. When applicable, use the validation tools and scripts in the hbbrain.utils submodule. You can add any
functions to this submodule if necessary for your implementation.

9. Often pull requests resolve one or more other issues (or pull requests). If merging your pull request means that
some other issues/PRs should be closed, you should use keywords to create link to them (e.g., Fixes #1234;
multiple issues/PRs are allowed as long as each one is preceded by a keyword). Upon merging, those issues/PRs
will automatically be closed by GitHub. If your pull request is simply related to some other issues/PRs, create a
link to them without using the keywords (e.g., See also #1234).

10. PRs should often substantiate the change, through benchmarks of performance and efficiency or through examples
of usage. Examples also illustrate the features and intricacies of the library to users. Have a look at other examples
in the examples directory for reference. Examples should demonstrate why the new functionality is useful in
practice and, if possible, compare it to other methods available in hyperbox-brain.

11. New features have some maintenance overhead. We expect PR authors to take part in the maintenance for the
code they submit, at least initially. New features need to be illustrated with narrative documentation in the user
guide, with small code snippets. If relevant, please also add references in the literature, with PDF links when
possible.

12. The user guide should also include expected time and space complexity of the algorithm and scalability, e.g. “this
algorithm can scale to a large number of samples > 1000000, but does not scale in dimensionality: n_features is
expected to be lower than 100”.

You can check for common programming errors with the following tools:

1. Code with a good unittest coverage (at least 80%, better 100%), check with:

pip install pytest pytest-cov
pytest --cov hbbrain path/to/tests_for_package

2. Run static analysis with mypy:

mypy hbbrain

1.5. Contributing 17

https://docs.pytest.org/en/7.1.x/
https://en.wikipedia.org/wiki/Non-regression_testing
https://en.wikipedia.org/wiki/Non-regression_testing
https://black.readthedocs.io/en/stable/integrations/editors.html
https://github.com/blog/1506-closing-issues-via-pull-requests/
https://github.com/UTS-CASLab/hyperbox-brain/tree/main/examples

hyperbox-brain, Release 0.1.1

must not produce new errors in your pull request. Using # type: ignore annotation can be a workaround for a
few cases that are not supported by mypy, in particular, when importing C or Cython modules on properties with
decorators.

Coding guidelines

The following are some guidelines on how new code should be written for inclusion in hyperbox-brain, and which may
be appropriate to adopt in external projects. Certainly, there are special cases and there will be exceptions to these rules.
However, following these rules when submitting new code makes the review easier so new code can be integrated in
less time.

Uniformly formatted code makes it easier to share code ownership. The hyperbox-brain project tries to closely follow
the official Python guidelines detailed in PEP8 that detail how code should be formatted and indented. Please read it
and follow it.

In addition, we add the following guidelines:

• Use underscores to separate words in non class names: n_samples rather than nsamples.

• Avoid multiple statements on one line. Prefer a line return after a control flow statement (if/for).

• Unit tests should use absolute imports, exactly as client code would.

• Please don’t use import * in any case. It is considered harmful by the official Python recommendations. It
makes the code harder to read as the origin of symbols is no longer explicitly referenced, but most important, it
prevents using a static analysis tool like pyflakes to automatically find bugs in hyperbox-brain.

• Use the numpy docstring standard in all your docstrings.

A good example of code that we like can be found here.

1.5.4 Documentation

We are happy to accept any sort of documentation: function docstrings, reStructuredText documents (like this one),
tutorials, etc. reStructuredText documents live in the source code repository under the docs/ directory.

You can edit the documentation using any text editor, and then generate the HTML output by typing make from the
docs/ directory. Alternatively, make html may be used to generate the documentation with the example gallery
(which takes quite some time). The resulting HTML files will be placed in _build/html and are viewable in a web
browser.

Building the documentation

First, make sure you have properly installed the development version.

Building the documentation requires installing some additional packages:

pip install sphinx sphinx-rtd-theme readthedocs-sphinx-search numpydoc \
sphinx-gallery hyperbox-brain nbsphinx sphinx-autodocgen \
pandas IPython

To build the documentation, you need to be in the docs folder:

cd docs

In the vast majority of cases, you only need to generate the full web site, without the example gallery:

18 Chapter 1. Introduction

https://divmod.readthedocs.io/en/latest/products/pyflakes.html
https://numpydoc.readthedocs.io/en/latest/format.html#numpydoc-docstring-guide
https://gist.github.com/nateGeorge/5455d2c57fb33c1ae04706f2dc4fee01
https://hyperbox-brain.readthedocs.io/en/latest/user/installation.html#from-source

hyperbox-brain, Release 0.1.1

make

The documentation will be generated in the _build/html directory. To also generate the example gallery you can use:

make html

This will run all the examples, which takes a while. If you only want to generate a few examples, you can use:

EXAMPLES_PATTERN=your_regex_goes_here make html

This is particularly useful if you are modifying a few examples.

Set the environment variable NO_MATHJAX=1 if you intend to view the documentation in an offline setting.

To build the PDF manual, run:

make latexpdf

Warning: Sphinx version

While we do our best to have the documentation build under as many versions of Sphinx as possible, the different
versions tend to behave slightly differently.

Guidelines for writing documentation

It is essential to keep a good compromise between mathematical and algorithmic details, and give intuition to the reader
on what the algorithm does.

Basically, to elaborate on the above, it is best to always start with a small paragraph with a hand-waving explanation of
what the method does to the data. Then, it is very helpful to point out why the feature is useful and when it should be
used - the latter also including “big O” (𝑂 (𝑔 (𝑛))) complexities of the algorithm, as opposed to just rules of thumb, as
the latter can be very machine-dependent. If those complexities are not available, then rules of thumb may be provided
instead.

Secondly, a generated figure from an example should then be included to further provide some intuition.

Next, one or two small code examples to show its use can be added.

Next, any math and equations, followed by references, can be added to further the documentation. Not starting the
documentation with the maths makes it more friendly towards users that are just interested in what the feature will do,
as opposed to how it works “under the hood”.

Finally, follow the formatting rules below to make it consistently good:

• Add “See Also” in docstrings for related classes/functions.

• “See Also” in docstrings should be one line per reference, with a colon and an explanation, for example:

See Also

SelectKBest : Select features based on the k highest scores.
SelectNSamples : Select samples based on a false negative rate test.

• When documenting the parameters and attributes, here is a list of some well-formatted examples:

1.5. Contributing 19

hyperbox-brain, Release 0.1.1

n_hyperboxes : int, default=10
The number of hyperboxes generated by the algorithm.

some_param : {'hello', 'goodbye'}, bool or int, default=True
The parameter description goes here, which can be either a string
literal (either `hello` or `goodbye`), a bool, or an int. The default
value is True.

array_parameter : {array-like, sparse matrix} of shape (n_samples, n_features) or␣
→˓(n_samples,)

This parameter accepts data in either of the mentioned forms, with one
of the mentioned shapes. The default value is
`np.ones(shape=(n_samples,))`.

list_param : list of int

typed_ndarray : ndarray of shape (n_samples,), dtype=np.int32

sample_weight : array-like of shape (n_samples,), default=None

multioutput_array : ndarray of shape (n_samples, n_classes) or list of such arrays

In general have the following in mind:

1. Use Python basic types.

2. Use parenthesis for defining shapes: array-like of shape (n_samples,) or array-like of
shape (n_samples, n_features)

3. For strings with multiple options, use brackets: input: {'log', 'squared', 'multinomial'}

4. 1D or 2D data can be a subset of {array-like, ndarray, sparse matrix, dataframe}. Note that
array-like can also be a list, while ndarray is explicitly only a numpy.ndarray.

5. Specify dataframe when “frame-like” features are being used, such as the column names.

6. When specifying the data type of a list, use of as a delimiter: list of int. When the parameter sup-
ports arrays giving details about the shape and/or data type and a list of such arrays, you can use one of
array-like of shape (n_samples,) or list of such arrays.

7. When specifying the dtype of an ndarray, use e.g. dtype=np.int32 after defining the shape: ndarray
of shape (n_samples,), dtype=np.int32. You can specify multiple dtype as a set: array-like
of shape (n_samples,), dtype={np.float64, np.float32}. If one wants to mention arbitrary
precision, use integral and floating rather than the Python dtype int and float. When both int and floating
are supported, there is no need to specify the dtype.

8. When the default is None, None only needs to be specified at the end with default=None. Be sure to
include in the docstring, what it means for the parameter or attribute to be None.

• For unwritten formatting rules, try to follow existing good works:

– When bibliographic references are available with arxiv or Digital Object Identifier identification numbers,
use the sphinx directives :arxiv: or :doi:.

– For “References” in docstrings, see this document.

• When editing reStructuredText (.rst) files, try to keep line length under 80 characters when possible (exceptions
include links and tables).

20 Chapter 1. Introduction

https://arxiv.org/
https://www.doi.org/
https://numpydoc.readthedocs.io/en/latest/format.html#references

hyperbox-brain, Release 0.1.1

• Do not modify sphinx labels as this would break existing cross references and external links pointing to specific
sections in the hyperbox-brain documentation.

• Before submitting your pull request check if your modifications have introduced new sphinx warnings and try to
fix them.

1.5.5 Issue Tracker Tags

All issues and pull requests on the GitHub issue tracker should have (at least) one of the following tags:

Bug / Crash
Something is happening that clearly shouldn’t happen. Wrong results as well as unexpected errors
from estimators go here.

Cleanup / Enhancement
Improving performance, usability, consistency.

Documentation
Missing, incorrect or sub-standard documentations and examples.

New Feature
Feature requests and pull requests implementing a new feature.

There are four other tags to help new contributors:

good first issue
This issue is ideal for a first contribution to hyperbox-brain. Ask for help if the formulation is unclear.
If you have already contributed to hyperbox-brain, look at Easy issues instead.

Easy
This issue can be tackled without much prior experience.

Moderate
Might need some knowledge of machine learning or the package, but is still approachable for someone
new to the project.

help wanted
This tag marks an issue which currently lacks a contributor or a PR that needs another contributor
to take over the work. These issues can range in difficulty, and may not be approachable for new
contributors. Note that not all issues which need contributors will have this tag.

1.5.6 Code Review Guidelines

Reviewing code contributed to the project as PRs is a crucial component of hyperbox-brain development. We encourage
anyone to start reviewing code of other developers. The code review process is often highly educational for everybody
involved. This is particularly appropriate if it is a feature you would like to use, and so can respond critically about
whether the PR meets your needs. While each pull request needs to be signed off by two core developers, you can speed
up this process by providing your feedback.

Note: The difference between an objective improvement and a subjective one isn’t always clear. Reviewers should
recall that code review is primarily about reducing risk in the project. When reviewing code, one should aim at pre-
venting situations which may require a bug fix, a deprecation, or a retraction. Regarding docs: typos, grammar issues
and disambiguations are better addressed immediately.

Here are a few important aspects that need to be covered in any code review, from high-level questions to a more
detailed check-list.

1.5. Contributing 21

https://github.com/UTS-CASLab/hyperbox-brain/issues

hyperbox-brain, Release 0.1.1

• Do we want this in the library? Is it likely to be used? Do you, as a hyperbox-brain user, like the change and
intend to use it? Is it in the scope of hyperbox-brain? Will the cost of maintaining a new feature be worth its
benefits?

• Is the code consistent with the API of hyperbox-brain? Are public functions/classes/parameters well named and
intuitively designed?

• Are all public functions/classes and their parameters, return types, and stored attributes named according to
hyperbox-brain conventions and documented clearly?

• Is any new functionality described in the user-guide and illustrated with examples?

• Is every public function/class tested? Are a reasonable set of parameters, their values, value types, and combi-
nations tested? Do the tests validate that the code is correct, i.e. doing what the documentation says it does? If
the change is a bug-fix, is a non-regression test included? Look at this document to get started with testing in
Python.

• Do the tests pass in the continuous integration build? If appropriate, help the contributor understand why tests
failed.

• Do the tests cover every line of code (see the coverage report in the build log)? If not, are the lines missing
coverage good exceptions?

• Is the code easy to read and low on redundancy? Should variable names be improved for clarity or consistency?
Should comments be added? Should comments be removed as unhelpful or extraneous?

• Could the code easily be rewritten to run much more efficiently for relevant settings?

• Is the code backwards compatible with previous versions? (or is a deprecation cycle necessary?)

• Will the new code add any dependencies on other libraries? (this is unlikely to be accepted)

• Does the documentation render properly (see the Documentation section for more details), and are the plots
instructive?

Communication Guidelines

Reviewing open pull requests (PRs) helps move the project forward. It is a great way to get familiar with the codebase
and should motivate the contributor to keep involved in the project.1

• Every PR, good or bad, is an act of generosity. Opening with a positive comment will help the author feel
rewarded, and your subsequent remarks may be heard more clearly. You may feel good also.

• Begin if possible with the large issues, so the author knows they’ve been understood. Resist the temptation to
immediately go line by line, or to open with small pervasive issues.

• Do not let perfect be the enemy of the good. If you find yourself making many small suggestions that don’t fall
into the Code Review Guidelines, consider the following approaches:

– refrain from submitting these;

– prefix them as “Nit” so that the contributor knows it’s OK not to address;

– follow up in a subsequent PR, out of courtesy, you may want to let the original contributor know.

• Do not rush, take the time to make your comments clear and justify your suggestions.

• You are the face of the project. Bad days occur to everyone, in that occasion you deserve a break: try to take
your time and stay offline.

1 Adapted from the numpy communication guidelines.

22 Chapter 1. Introduction

https://jeffknupp.com/blog/2013/12/09/improve-your-python-understanding-unit-testing
https://numpy.org/devdocs/dev/reviewer_guidelines.html#communication-guidelines

hyperbox-brain, Release 0.1.1

Important: This guide line is adapted from scikit-learn guidelines under the MIT licence.

1.6 About hyperbox-brain

hyperbox-brain is an open-source machine learning package in Python for hyperbox-based machine learning algo-
rithms. Learning algorithms using hyperboxes as fundamental representational and building blocks are a branch of
machine learning methods. These algorithms have enormous potential for high scalability and online adaptation of
predictors built using hyperbox data representations to the dynamically changing environments. This library focuses
on developing and extending the learning algorithms for a specific type of universal hyperbox-based classifiers, i.e.,
fuzzy min-max neural networks and general fuzzy min-max neural network.

Hyperboxes can be used to deal with the pattern classification and clustering problems effectively by partitioning the
pattern space and assigning a class label or cluster associated with a degree of certainty for each region. Each fuzzy
min-max hyperbox is represented by minimum and maximum points together with a fuzzy membership function. The
membership function is employed to compute the degree-of-fit of each input sample to a given hyperbox. Meanwhile,
the hyperboxes are continuously adjusted during the training process to cover the input patterns. The use of hyperboxes
for learning systems can form a core module aiming to build smart adaptive systems and life-long learning systems in
the near future.

1.6.1 Ecosystem

hyperbox-brain is part of the hyperbox-based machine learning ecosystem. In Python, this library can be used
together with pipeline and hyper-parameter optimisers in the scikit-learn library. This library can be also compatible
with other optimisers in Python such as hyperopt and Optuna.

1.6.2 Development team

This library is the result of hyperbox-based machine learning project conducted by the Complex Adaptive Systems in
the University of Technology Sydney. Current members of the development team (in alphabetical order):

• Prof. Bogdan Gabrys

• Dr. Thanh Tung Khuat

We also acknowledge the individual members of the open-source community who have contributed to this project.

1.6.3 Citing

If hyperbox-brain has been useful for your research and you would like to cite it in an academic publication, please
use the following paper:

@article{khga23,
title={hyperbox-brain: A Python toolbox for hyperbox-based machine learning␣

→˓algorithms},
author={Khuat, Thanh Tung and Gabrys, Bogdan},
journal={SoftwareX},
volume={23},
pages={101425},
year={2023},

(continues on next page)

1.6. About hyperbox-brain 23

https://scikit-learn.org/stable/developers/contributing.html
https://scikit-learn.org/
http://hyperopt.github.io/hyperopt/
https://optuna.org/
https://uts.edu.au/
https://github.com/UTS-CASLab/hyperbox-brain/graphs/contributors

hyperbox-brain, Release 0.1.1

(continued from previous page)

url={https://doi.org/10.1016/j.softx.2023.101425},
publisher={Elsevier}

}

1.6.4 Logo

The hyperbox-brain logo is designed by Thanh Tung Khuat.

24 Chapter 1. Introduction

CHAPTER

TWO

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 utilitity functions

2.1.1 utils.membership_calc

Contain all functions supporting for computing fuzzy membership values in various ways.

hbbrain.utils.membership_calc.asym_similarity_val_one_many_hyperboxes(xl, xu, V, W, g=1,
asimil_type='max')

Calculate the asymetrical similarity value of a specific hyperbox (lower bound - xl, upper bound - xu) and hy-
perboxes having lower and upper bounds stored in two matrix V and W respectively

Parameters

xl
[array-like of shape (n_features,)] Lower bound of an input hyperbox.

xu
[array-like of shape (n_features,)] Upper bound of an input hyperbox.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
existing hyperboxes, in which each row is a minimal point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
existing hyperboxes, in which each row is a maximal point of a hyperbox.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

asimil_type
[{‘max’, ‘min’}, optional, default=’max’] Type of handling asymmetric similarity matrix.

Returns

b
[array-like of shape (n_hyperboxes,)] Similarity values of the specific hyperbox with all hy-
perboxes having lower and upper bounds in V and W.

25

hyperbox-brain, Release 0.1.1

hbbrain.utils.membership_calc.bitwise_membership(x_cat, D)

Compute membership values between categorical features in the input pattern X_cat and all categorical features
of existing hyperboxes stored in D.

Parameters

x_cat
[array-like of shape (n_cat_features,)] Categorical features of an input pattern. Each feature
is represented by an array of one-hot encoded values.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all bounds of categor-
ical features for all existing hyperboxes, in which each row stores categorical features of a
hyperbox.

Returns

mem_val
[array-like of shape (n_hyperboxes,).] An array stores the degrees of membership from the
input pattern to all existing hyperboxes which are computed based on categorical features.

hbbrain.utils.membership_calc.f_sim_freq_cat_features(x_cat, E, similarity_of_cat_vals)
Compute similarity values in each categorical dimension between a input categorical features x_cat and each
element in the current list of categorical bounds of existing hyperboxes.

Parameters

x_cat
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

E
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all bounds of categor-
ical features for all existing hyperboxes, in which each row stores categorical features of a
hyperbox.

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

Returns

sim_vals
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores similarity values in each
categorical dimension between the input categorical features and all bounds of categorical
features of existing hyperboxes.

hbbrain.utils.membership_calc.get_membership_extended_iol_gfmm_all_classes(Xl, Xu, X_cat, V,
W, D, C, g=1,
alpha=0.5)

Return membership values (according to the membership function of the GFMM classifiers) with respect to all
class labels between the continuoues input patterns stored in two lower and upper bound input matrices Xl and
Xu while categorical input patterns stored in the matrix Xd and existing hyperboxes represented by two matrices
of minimum and maximum points V and W for continuous features and the matrix of categorical features D
together with corresponding class labels in vector C.

Parameters

26 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Xl
[array-like of shape (n_samples, n_continuous_features) or (n_continuous_features,)] Lower
bounds of input samples.

Xu
[array-like of shape (n_samples, n_continuous_features) or (n_continuous_features,)] Upper
bounds of input samples.

X_cat
[array-like of shape (n_samples, n_cat_features) or (n_cat_features,)] Categorical bounds
of input samples.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] Minimum points of the existing
hyperboxes in the trained model.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] Maximum points of the existing
hyperboxes in the trained model.

D
[array-like of shape (n_hyperboxes, n_cat_features)] Categorical bound of the existing hy-
perboxes in the trained model.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes corresponding
to the values stored in V, W, and D.

g
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continuous
dimension.

alpha
[float, optional, default=0.5] The trade-off weighting factor between the impacts of categor-
ical features and numerical features on the outputs of membership values.

Returns

mem_vals_matrix
[array-like of shape (n_samples, n_classes)] Membership values with regard to all class labels
for each input sample. Each row is a vector of membership values. Each column represents
an index of a class label sorted in an ascending order of class labels.

hyperbox_ids_matrix
[array-like of shape (n_samples, n_classes)] Storing the indices of hyperboxes corresponding
to membership values for classes.

hbbrain.utils.membership_calc.get_membership_fmnn_all_classes(X, V, W, C, g=1)
Return membership values (according to the membership function of the FMNN classifiers) with respect to all
class labels between the input patterns stored in the matrix X and existing hyperboxes represented by two matrices
of minimum and maximum points V and W together with the corresponding class labels in the vector C.

Parameters

X
[array-like of shape (n_samples, n_features) or (n_features,)] Input samples.

V
[array-like of shape (n_hyperboxes, n_features)] Minimum points of the existing hyperboxes
in the trained model.

2.1. utilitity functions 27

hyperbox-brain, Release 0.1.1

W
[array-like of shape (n_hyperboxes, n_features)] Maximum points of the existing hyperboxes
in the trained model.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes corresponding
to the values stored in V and W.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

Returns

mem_vals_matrix
[array-like of shape (n_samples, n_classes)] Membership values with respect to all class
labels for each input sample. Each row is a vector of membership values. Each column
represents an index of a class label sorted in an ascending order of class labels.

hyperbox_ids_matrix
[array-like of shape (n_samples, n_classes)] Storing the indices of hyperboxes corresponding
to membership values for classes.

hbbrain.utils.membership_calc.get_membership_free_range_gfmm_all_classes(Xl, Xu, V, W, C,
g=1)

Return membership values (according to the membership function of the GFMM classifiers with unbounded
range) with respect to all class labels between the input patterns stored in two lower and upper bound input
matrices Xl and Xu and existing hyperboxes represented by two matrices of minimum and maximum points V
and W together with corresponding class labels in vector C.

Parameters

Xl
[array-like of shape (n_samples, n_features) or (n_features,)] Lower bounds of input sam-
ples.

Xu
[array-like of shape (n_samples, n_features) or (n_features,)] Upper bounds of input sam-
ples.

V
[array-like of shape (n_hyperboxes, n_features)] Minimum points of the existing hyperboxes
in the trained model.

W
[array-like of shape (n_hyperboxes, n_features)] Maximum points of the existing hyperboxes
in the trained model.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes corresponding
to the values stored in V and W.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

Returns

mem_vals_matrix
[array-like of shape (n_samples, n_classes)] Membership values with regard to all class labels

28 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

for each input sample. Each row is a vector of membership values. Each column represents
an index of a class label sorted in an ascending order of class labels.

hyperbox_ids_matrix
[array-like of shape (n_samples, n_classes)] Storing the indices of hyperboxes corresponding
to membership values for classes.

hbbrain.utils.membership_calc.get_membership_freq_cat_gfmm_all_classes(Xl, Xu, X_cat, V, W, E,
F, C,
similarity_of_cat_vals,
g=1)

Return membership values (according to the membership function of the GFMM classifiers) with respect to
all class labels between the input patterns stored in two lower and upper bound matrices for input continuous
features Xl and Xu and two lower and upper bound matrices for input categorical features and existing hyperboxes
represented by four matrices of minimum and maximum points for continuous features V and W and lower and
upper bounds for categorical features E and F together with corresponding class labels in vector C.

Parameters

Xl
[array-like of shape (n_samples, n_continuous_features) or (n_continuous_features,)] Lower
bounds of continuous features of all input samples. If None, there are no continous features.

Xu
[array-like of shape (n_samples, n_continuous_features) or (n_continuous_features,)] Lower
bounds of continuous features of all input samples. If None, there are no continous features.

X_cat
[array-like of shape (n_samples, n_cat_features) or (n_cat_features,)] Categorical features
of all input patterns. If None, there are no categorical features.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] Minimum points of all continu-
ous features of the existing hyperboxes in the trained model. If None, there are no continous
features.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] Maximum points of all contin-
uous features of the existing hyperboxes in the trained model. If None, there are no continous
features.

E
[array-like of shape (n_hyperboxes, n_cat_features)] Lower bounds of all categorical features
of the existing hyperboxes in the trained model. If None, there are no categorical features.

F
[array-like of shape (n_hyperboxes, n_cat_features)] Upper bounds of all categorical features
of the existing hyperboxes in the trained model. If None, there are no categorical features.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes corresponding
to the values stored in V, W, and E, F.

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

2.1. utilitity functions 29

hyperbox-brain, Release 0.1.1

g
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continous
dimension.

Returns

mem_vals_matrix
[array-like of shape (n_samples, n_classes)] Membership values with regard to all class labels
for each input sample. Each row is a vector of membership values. Each column represents
an index of a class label sorted in an ascending order of class labels.

hyperbox_ids_matrix
[array-like of shape (n_samples, n_classes)] Storing the indices of hyperboxes corresponding
to membership values for classes.

hbbrain.utils.membership_calc.get_membership_gfmm_all_classes(Xl, Xu, V, W, C, g=1)
Return membership values (according to the membership function of the GFMM classifiers) with respect to all
class labels between the input patterns stored in two lower and upper bound input matrices Xl and Xu and existing
hyperboxes represented by two matrices of minimum and maximum points V and W together with corresponding
class labels in vector C.

Parameters

Xl
[array-like of shape (n_samples, n_features) or (n_features,)] Lower bounds of input sam-
ples.

Xu
[array-like of shape (n_samples, n_features) or (n_features,)] Upper bounds of input sam-
ples.

V
[array-like of shape (n_hyperboxes, n_features)] Minimum points of the existing hyperboxes
in the trained model.

W
[array-like of shape (n_hyperboxes, n_features)] Maximum points of the existing hyperboxes
in the trained model.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes corresponding
to the values stored in V and W.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

Returns

mem_vals_matrix
[array-like of shape (n_samples, n_classes)] Membership values with regard to all class labels
for each input sample. Each row is a vector of membership values. Each column represents
an index of a class label sorted in an ascending order of class labels.

hyperbox_ids_matrix
[array-like of shape (n_samples, n_classes)] Storing the indices of hyperboxes corresponding
to membership values for classes.

hbbrain.utils.membership_calc.get_membership_onehot_gfmm_all_classes(Xl, Xu, Xd, V, W, D, C,
g=1)

30 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Return membership values (according to the membership function of the GFMM classifiers) with respect to all
class labels between the input patterns stored in two lower and upper bound input matrices Xl and Xu and existing
hyperboxes represented by two matrices of minimum and maximum points V and W together with corresponding
class labels in vector C.

Parameters

Xl
[array-like of shape (n_samples, n_continuous_features) or (n_continuous_features,)] Lower
bounds of continuous features of all input samples. If None, there are no continous features.

Xu
[array-like of shape (n_samples, n_continuous_features) or (n_continuous_features,)] Lower
bounds of continuous features of all input samples. If None, there are no continous features.

Xd
[array-like of shape (n_samples, n_cat_features) or (n_cat_features,)] Bounds of categorical
features of all input patterns. If None, there are no categorical features.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] Minimum points of all continu-
ous features of the existing hyperboxes in the trained model. If None, there are no continous
features.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] Maximum points of all contin-
uous features of the existing hyperboxes in the trained model. If None, there are no continous
features.

D
[array-like of shape (n_hyperboxes, n_cat_features)] Bounds of all categorical features of the
existing hyperboxes in the trained model. If None, there are no categorical features.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes corresponding
to the values stored in V, W, and D.

g
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continous
dimension.

Returns

mem_vals_matrix
[array-like of shape (n_samples, n_classes)] Membership values with regard to all class labels
for each input sample. Each row is a vector of membership values. Each column represents
an index of a class label sorted in an ascending order of class labels.

hyperbox_ids_matrix
[array-like of shape (n_samples, n_classes)] Storing the indices of hyperboxes corresponding
to membership values for classes.

hbbrain.utils.membership_calc.membership_cat_feature_eiol_gfmm(x_cat, D)

Compute membership degrees between input categorical features and all bounds of categorical features of exist-
ing hyperboxes for the extended improved online learning algorithm of general fuzzy min-max neural network.

Parameters

2.1. utilitity functions 31

hyperbox-brain, Release 0.1.1

x_cat
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all bounds of categorical
features for all existing hyperboxes, in which each row stores a categorical features bound for
a hyperbox. Each element 𝑑𝑖𝑗 ∈ 𝐷 is a set of symbolic values with their cardinalities for the
j-th categorical dimension of the hyperbox 𝐵𝑖. For example, 𝑑𝑖1 = {𝑎𝑝𝑝𝑙𝑒 : 5, 𝑜𝑟𝑎𝑛𝑔𝑒 : 1}
means that the first categorical feature of the hyperbox 𝐵𝑖 contains 5 values of apple and 1
value of orange.

Returns

b
[array-like of shape (n_hyperboxes,).] An array stores the degrees of membership from the
input pattern to all existing hyperboxes which are computed based on categorical features.

hbbrain.utils.membership_calc.membership_func_extended_iol_gfmm(xl, xu, x_cat, V, W, D, g=1,
alpha=0.5)

Compute fuzzy membership values between an input pattern and a list of existing hyperboxes of a general fuzzy
min-max neural network with mixed-attribute data.

Note: This function provides the degrees of membership b of an input pattern x (in form of upper bound xu and
lower bound xl for continuous features and categorical features x_cat) with respect to the existing hyperboxes
represented by minimal points V and maximal points W for continuous features and the bound D for categorical
features. The sensitivity parameter g regulates how fast the membership values decrease when an input contin-
uous pattern is separeted from hyperbox core. The parameter alpha is the trade-off factor between impacts of
continuous features and categorical features on the output of membership values. Each element 𝑑𝑖𝑗 ∈ 𝐷 is a set
of symbolic values with their cardinalities for the j-th categorical dimension of the hyperbox 𝐵𝑖. For example,
𝑑𝑖1 = {𝑎𝑝𝑝𝑙𝑒 : 5, 𝑜𝑟𝑎𝑛𝑔𝑒 : 1} means that the first categorical feature of the hyperbox 𝐵𝑖 contains 5 values of
apple and 1 value of orange.

Parameters

xl
[array-like of shape (n_continuous_features,)] Lower bound of continous features of an input
pattern.

xu
[array-like of shape (n_continuous_features,)] Upper bound of continous features of an input
pattern.

x_cat
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores a special structure for

32 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

categorical features of all existing hyperboxes. Each element in D stores a set of symbolic
values with their cardinalities for the j-th categorical dimension of a given hyperbox.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continous dimension.

alpha
[float, optional, default=0.5] The trade-off weighting factor between the impacts of categor-
ical features and numerical features on the outputs of membership values.

Returns

b
[array-like of shape (n_hyperboxes,)] Degrees of membership of the input pattern x=[xl, xu,
x_cat] corresponding to each hyperbox in the current list of existing hyperboxes.

hbbrain.utils.membership_calc.membership_func_fmnn(x, V, W, g=1)
Compute fuzzy membership values between an input pattern and a list of existing hyperboxes of a fuzzy min-max
neural network and its improved versions.

For more details regarding how to calculate fuzzy membership values, please refer to the publication [1].

Note: This function provides the degrees of membership b of an input pattern x with respect to the existing
hyperboxes described by minimal points V and maximal points W. The sensitivity parameter g regulates how
fast the membership values decrease when an input pattern is separeted from hyperbox core.

Parameters

x
[array-like of shape (n_features,)] An input pattern.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
existing hyperboxes, in which each row is a minimal point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
existing hyperboxes, in which each row is a maximal point of a hyperbox.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

Returns

b
[array-like of shape (n_hyperboxes,)] Degrees of membership of the input pattern X=[Xl,
Xu] corresponding to each hyperbox in the current list of existing hyperboxes.

2.1. utilitity functions 33

hyperbox-brain, Release 0.1.1

References

[1]

hbbrain.utils.membership_calc.membership_func_free_range_gfmm(xl, xu, V, W, g=1)
Compute fuzzy membership values between an input pattern and a list of existing hyperboxes of a general fuzzy
min-max neural network. This membership function does not require the coordinates located in the range of [0,
1].

Note: This function provides the degrees of membership b of an input pattern x (in form of upper bound xu and
lower bound xl) with respect to the existing hyperboxes described by minimal points V and maximal points W.
The sensitivity parameter g regulates how fast the membership values decrease when an input pattern is separeted
from hyperbox core.

Parameters

xl
[array-like of shape (n_features,)] Lower bound of an input pattern.

xu
[array-like of shape (n_features,)] Upper bound of an input pattern.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
existing hyperboxes, in which each row is a minimal point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
existing hyperboxes, in which each row is a maximal point of a hyperbox.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

Returns

b
[array-like of shape (n_hyperboxes,)] Degrees of membership of the input pattern X=[Xl,
Xu] corresponding to each hyperbox in the current list of existing hyperboxes.

hbbrain.utils.membership_calc.membership_func_freq_cat_gfmm(xl, xu, x_cat, V, W, E, F,
similarity_of_cat_vals, g=1)

Compute the membership values between an input pattern with respect to all hyperboxes (including continous
and categorical features). The membership values for categorical features is computed based on the occurrence
frequency values of different class labels with regards to each categorical values in each categorical feature.

For more details regarding how to calculate fuzzy membership values, please refer to the publications [1] and
[2].

Parameters

xl
[array-like of shape (n_continuous_features,)] Lower bounds of input continuous features
of the input pattern.

xu
[array-like of shape (n_continuous_features,)] Upper bounds of input continuous features of
the input pattern.

34 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

x_cat
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] Minimum points of continuous
features of the existing hyperboxes in the trained model.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] Maximum points of continuous
features of the existing hyperboxes in the trained model.

E
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all lower bounds of
categorical features for all existing hyperboxes, in which each row stores a lower categorical
features bound for a hyperbox.

F
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all upper bounds of
categorical features for all existing hyperboxes, in which each row stores a upper categorical
features bound for a hyperbox.

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous dimension.

Returns

b
[array-like of shape (n_hyperboxes,)] Degrees of membership of the input pattern X=[Xl,
Xu] corresponding to each hyperbox in the current list of existing hyperboxes.

References

[1], [2]

hbbrain.utils.membership_calc.membership_func_gfmm(xl, xu, V, W, g=1)
Compute fuzzy membership values between an input pattern and a list of existing hyperboxes of a general fuzzy
min-max neural network.

For more details regarding how to calculate fuzzy membership values, please refer to the publications [1] and
[2].

Note: This function provides the degrees of membership b of an input pattern x (in form of upper bound xu and
lower bound xl) with respect to the existing hyperboxes described by minimal points V and maximal points W.
The sensitivity parameter g regulates how fast the membership values decrease when an input pattern is separeted
from hyperbox core.

Parameters

xl
[array-like of shape (n_features,)] Lower bound of an input pattern.

2.1. utilitity functions 35

hyperbox-brain, Release 0.1.1

xu
[array-like of shape (n_features,)] Upper bound of an input pattern.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
existing hyperboxes, in which each row is a minimal point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
existing hyperboxes, in which each row is a maximal point of a hyperbox.

g
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

Returns

b
[array-like of shape (n_hyperboxes,)] Degrees of membership of the input pattern X=[Xl,
Xu] corresponding to each hyperbox in the current list of existing hyperboxes.

References

[1], [2]

hbbrain.utils.membership_calc.membership_func_onehot_gfmm(xl, xu, xd, V, W, D, g=1)
Compute membership values between an input pattern of which continuous features are represented by the lower
bound xl and the upper bound xu while categorical features are presented by the bound xd and all existing hyper-
boxes with lower and upper bounds stored in V and W and the categorical bound stored in D.

Parameters

xl
[array-like of shape (n_continuous_features,)] Lower bound of continous features of an input
pattern.

xu
[array-like of shape (n_continuous_features,)] Upper bound of continous features of an input
pattern.

xd
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points of continous features for all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points of continuous features for all existing hyperboxes, in which each row is a maximal
point of a hyperbox.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all bounds of categorical
features for all existing hyperboxes, in which each row contains the bound of a hyperbox.

g
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-

36 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

rameter describing the speed of decreasing of the membership function in continuous di-
mensions.

Returns

b
[array-like of shape (n_hyperboxes,)] Degrees of membership of the input pattern x=[xl, xu,
xd] corresponding to each hyperbox in the current list of existing hyperboxes.

hbbrain.utils.membership_calc.membership_function_freq_cat(x_cat, E, F, similarity_of_cat_vals)
Compute membership degrees between input categorical features and all lower and upper bounds of categorical
features of existing hyperboxes.

Parameters

x_cat
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

E
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all lower bounds of
categorical features for all existing hyperboxes, in which each row stores a lower categorical
features bound for a hyperbox.

F
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all upper bounds of
categorical features for all existing hyperboxes, in which each row stores a upper categorical
features bound for a hyperbox.

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

Returns

b
[array-like of shape (n_hyperboxes,).] An array stores the degrees of membership from the
input pattern to all existing hyperboxes which are computed based on categorical features.

hbbrain.utils.membership_calc.n_cat_features_containing_bit_one(v)
This function is to count number of categorical features in v in which there is at least one bit 1

2.1.2 utils.adjust_hyperbox

The hbbrain.utils.adjust_hyperbox submodule implements various functions for hyperbox adjustment, e.g.,
hyperbox overlap test, overlap resolving, and hyperbox contraction.

hbbrain.utils.adjust_hyperbox.hyperbox_contraction_efmnn(V, W, case_contraction, id_extended_box,
id_tested_box, alpha=1e-05)

Adjust the coordinates of two hyperboxes for overlap resolving corresponding to nine overlap test cases.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

2.1. utilitity functions 37

hyperbox-brain, Release 0.1.1

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of all ex-
isting hyperboxes in the trained model.

case_contraction
[a list of two elements] This is a special struct which is the outcomes of the hyper-
box_overlap_test_efmnn function to determine the overlap test case and corresponding over-
lapped dimension.

id_extended_box
[int] id_extended_boxex of the extended hyperbox which needs to test for overlap.

id_tested_box
[int] id_extended_boxex of the hyperbox to test for overlap with the extended hyperbox.

alpha
[float] A very small value is used to avoid the overlap between two hyperboxes after contrac-
tion.

Returns

Vout
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes with two hyperboxes adjusted.

Wout
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of all ex-
isting hyperboxes with two hyperboxes adjusted.

hbbrain.utils.adjust_hyperbox.hyperbox_contraction_fmnn(V, W, case_contraction, id_extended_box,
id_tested_box, alpha=1e-05)

Adjust the coordinates of two hyperboxes for overlap resolving.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of all ex-
isting hyperboxes in the trained model.

case_contraction
[a list of two elements] This is a special struct which is the outcomes of the
hyperbox_overlap_test_fmnn() function to determine the overlap test case and corre-
sponding overlapped dimension.

id_extended_box
[int] id_extended_boxex of the extended hyperbox which needs to test for overlap.

id_tested_box
[int] id_extended_boxex of the hyperbox to test for overlap with the extended hyperbox.

alpha
[float, optional, default=0.00001] A very small value is used to avoid the overlap between
two hyperboxes after contraction.

Returns

38 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Vout
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes with two hyperboxes adjusted.

Wout
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of all ex-
isting hyperboxes with two hyperboxes adjusted.

hbbrain.utils.adjust_hyperbox.hyperbox_contraction_freq_cat_gfmm(Ei, Fi, case_contraction)
Perform hyperbox contraction in categorical features for a given hyperbox.

Parameters

Ei
[array-like of shape (n_cat_features,)] Lower bounds for categorical features of the hyperbox
which need to do contraction.

Fi
[array-like of shape (n_cat_features,)] Upper bounds for categorical features of the hyperbox
which need to do contraction.

case_contraction
[a list of two elements] This is a special struct which is the outcomes of the
hyperbox_overlap_test_freq_cat_gfmm() function to determine the overlap test case
and corresponding overlapped dimension for categorical features.

Returns

E_out
[array-like of shape (n_cat_features,)] Lower bounds for categorical features of the hyper-
boxes contracted.

F_out
[array-like of shape (n_cat_features,)] Upper bounds for categorical features of the hyper-
boxes contracted.

hbbrain.utils.adjust_hyperbox.hyperbox_contraction_rfmnn(V, W, C, ids_parent_box, id_child_box,
overlap_dim, scale=0.001)

Adjusting or splitting min-max points of overlaping clusters in the refined fuzzy min-max neural network classi-
fier. The detailed information of this procedure can be found in [1].

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes.

ids_parent_box
[array-like of shape (n_parent_hyperboxes,)] List of indices of parent hyperboxes fully con-
taining the child hyperbox.

id_child_box
[int] Index of a child hyperbox fully contained in parent hyperboxes

2.1. utilitity functions 39

hyperbox-brain, Release 0.1.1

overlap_dim
[array-like of shape (n_parent_hyperboxes,)] The overlapped dimensions between parent hy-
perboxes and the child hyperbox need to make contraction.

scale
[float, optional, default=0.001] A buffer value is used to avoid overlap on the edges between
hyperboxes after contraction

Returns

Vout
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes after doing contraction.

Wout
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (minimum points) of all ex-
isting hyperboxes after doing contraction.

Cout
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes after doing con-
traction.

References

[1]

hbbrain.utils.adjust_hyperbox.hyperbox_overlap_test_efmnn(V, W, id_extended_box, id_tested_box,
X)

Check the overlap of two input hyperboxes

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of all ex-
isting hyperboxes in the trained model.

id_extended_box
[int] Index of the extended hyperbox which needs to test for overlap.

id_tested_box
[int] Index of the hyperbox to test for overlap with the extended hyperbox.

X
[array-like of shape (n_features,)] Current input sample leads to the extension of the existing
hyperbox (only be used for contraction case 9)

Returns

dim
[list with two integer elements] The first element contains the overlap test case which two hy-
perboxes overlap with each other. The second element contains the corresponding dimension
where two hyperboxes overlap with each other.

hbbrain.utils.adjust_hyperbox.hyperbox_overlap_test_fmnn(V, W, id_extended_box, id_tested_box)
Check the overlap of two input hyperboxes

Parameters

40 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of all ex-
isting hyperboxes in the trained model.

id_extended_box
[int] id_extended_boxex of the extended hyperbox which needs to test for overlap.

id_tested_box
[int] id_extended_boxex of the hyperbox to test for overlap with the extended hyperbox.

Returns

dim
[list with two integer elements] The first element contains the overlap test case which two hy-
perboxes overlap with each other. The second element contains the corresponding dimension
where two hyperboxes overlap with each other.

hbbrain.utils.adjust_hyperbox.hyperbox_overlap_test_freq_cat_gfmm(E, F, id_extended_box,
id_tested_box, X_cat,
similarity_of_cat_vals,
cat_overlap_resolved_hyperbox_id)

Test overlap in categorical features between two input hyperboxes.

Parameters

E
[array-like of shape (n_hyperboxes, n_cat_features)] Lower bounds for categorical features
of all existing hyperboxes.

F
[array-like of shape (n_hyperboxes, n_cat_features)] Upper bounds for categorical features
of all existing hyperboxes.

id_extended_box
[int] Index of the extended hyperbox which needs to test for overlap.

id_tested_box
[int] Index of the hyperbox to test for overlap with the extended hyperbox.

X_cat
[array-like of shape (n_samples, n_cat_features)] Categorical features of all training data.

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

cat_overlap_resolved_hyperbox_id
[a list of int] Indices of hyperboxes overlapping with the extended hyperbox but the over-
lapping regions among them were resolved by changing values on only categorical features.
When replacing an overlap area by other values, we are not allowed to create the overlapping
regions with the hyperboxes having indices stored in this list.

Returns

dim
[a list of two element in the form of [dimension, replaced values]] If this list is empty, there

2.1. utilitity functions 41

hyperbox-brain, Release 0.1.1

is no overlapping area among categorical features in two hyperboxes. Otherwise, this list
shows the categorical dimension where the overlap occurs. If the first element in this list
(dimension) gets the value of -1, it means that there is an overlapping region but we cannot
find a suitable value to replace for any dimension to resolve the overlap in the categorical
features. The second element in this list contains two new values for lower and upper bounds
in the categorical dimension shown in dimension. If the second value of this list is None,
then no change happens in the bounds in that categorical dimension.

hbbrain.utils.adjust_hyperbox.is_overlap_cat_features_one_by_one(E1, F1, E2, F2)
Check whether all categorical features of two input hyperboxes repsented by lower bounds E1, E2 and upper
bounds F1, F2 overlap with each other.

Parameters

E1
[array-like of shape (n_cat_features,)] Lower bound for categorical features of the first hy-
perbox.

F1
[array-like of shape (n_cat_features,)] Upper bound for categorical features of the first hy-
perbox.

E2
[array-like of shape (n_cat_features,)] Lower bound for categorical features of the second
hyperbox.

F2
[array-like of shape (n_cat_features,)] Upper bound for categorical features of the second
hyperbox.

Returns

bool
True if all categorical features in bounds overlap with each other. Otherwise, return False.

hbbrain.utils.adjust_hyperbox.is_overlap_cat_features_one_vs_many(E1, F1, E, F,
tested_box_ids=[])

Check for overlap in categorical features between an input hyperbox and a list of existing hyperboxes.

Parameters

E1
[array-like of shape (n_cat_features,)] Lower bound for categorical features of the hyperbox
which needs to check for overlap.

F1
[array-like of shape (n_cat_features,)] Upper bound for categorical features of the hyperbox
which needs to check for overlap.

E
[array-like of shape (n_hyperboxes, n_cat_features)] Lower bounds for categorical features
of all existing hyperboxes.

F
[array-like of shape (n_hyperboxes, n_cat_features)] Upper bounds for categorical features
of all existing hyperboxes.

tested_box_ids
[a list of int, optional, default=[]] The indices of existing hyperboxes with which the input
hyperbox needs to check overlap.

42 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Returns

bool
Return True if the categorical features of the input hyperbox overlap with any existing hyper-
boxes that are checked for.

hbbrain.utils.adjust_hyperbox.is_overlap_diff_labels_num_data_rfmnn(V, W, V_cmp, W_cmp,
find_dim_min_overlap=True)

Check whether there is any overlapping region between the hyperbox represented by minimum point V_cmp and
maximum point W_cmp and any hyperbox in the existing list of hyperboxes belonging to other classes. The
detailed information of this procedure can be found in [1].

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of hyper-
boxes representing other classes compared to V_cmp.

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of hyper-
boxes representing other classes compared to W_cmp.

V_cmp
[array-like of shape (n_features,)] Minimum point of the compared hyperbox.

W_cmp
[array-like of shape (n_features,)] Maximum point of the compared hyperbox.

find_dim_min_overlap
[boolean, optional, default=True] If True, then find the dimension causing the minimum
overlap between the hyperbox [V_cmp, W_cmp] and any hyperboxes in the list of hyperboxes
represented by [V, W]. Otherwise, only test whether there is any existing overlap zone.

Returns

if find_dim_min_overlap == False:
return False - no overlap, True - overlap

else:

return:

• is_overlap: False - no overlap, True - overlap

• hyperbox_ids_overlap: indices of hyperboxes overlap with [V_cmp, W_cmp] - numpy
array

• min_overlap_dimension: dimension with minimum overlap value > 0 corresponding to
hyperboxes with id located in hyperbox_id_overlap

if is_overlap == False:
hyperbox_ids_overlap = min_overlap_dimension = None

2.1. utilitity functions 43

hyperbox-brain, Release 0.1.1

References

[1]

hbbrain.utils.adjust_hyperbox.is_overlap_one_many_diff_label_hyperboxes_mixed_data_general(V,
W,
D,
N_samples,
V_cmp,
W_cmp,
D_cmp,
N_samples_cmp)

Check whether an input hyperbox overlaps with any hyperboxes representing different classes with the input
hyperbox

Parameters

V
[array-like of shape (n_hyperboxes, n_continuous_features)] Lower continuous bounds (min-
imum points) of hyperboxes representing other classes compared to V_cmp.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] Upper continuous bounds
(maximum points) of hyperboxes representing other classes compared to W_cmp.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores a special structure for
categorical features of all hyperboxes representing other classes compared to D_cmp. Each
element in D stores a set of symbolic values with their cardinalities for the j-th categorical
dimension of a given hyperbox.

N_samples
[array-like of shape (n_hyperboxes,)] A vector save the number of samples contained in each
hyperbox stored in the lists of V, W, D

V_cmp
[array-like of shape (n_continuous_features,)] Minimum point of the compared hyperbox.

W_cmp
[array-like of shape (n_continuous_features,)] Maximum point of the compared hyperbox.

D_cmp
[array-like of shape (n_cat_features,)] Categorical bound of the compared hyperbox. It con-
tains a set of symbolic values with their cardinalities for the j-th categorical dimension of the
compared hyperbox.

N_samples_cmp
[int] A scalar storing the number of hyperboxes included in the hyperbox represented by
[V_cmp, W_cmp, D_cmp]

Returns

bool
Show if the input hyperbox overlaps with any hyperbox in the list of hyperboxes representing
the classes other than the input hyperbox.

hbbrain.utils.adjust_hyperbox.is_overlap_one_many_diff_label_hyperboxes_num_data_general(V,
W,
V_cmp,
W_cmp)

44 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Check whether an input hyperbox overlaps with any hyperboxes representing different classes with the input
hyperbox

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of hyper-
boxes representing other classes compared to V_cmp.

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (maximum points) of hyper-
boxes representing other classes compared to W_cmp.

V_cmp
[array-like of shape (n_features,)] Minimum point of the compared hyperbox.

W_cmp
[array-like of shape (n_features,)] Maximum point of the compared hyperbox.

Returns

bool
Show if the input hyperbox overlaps with any hyperbox in the list of hyperboxes representing
the classes other than the input hyperbox.

hbbrain.utils.adjust_hyperbox.is_overlap_one_many_hyperboxes_num_data_general(V, W, C,
id_box)

Check overlap between the hyperbox at the position id_box and remaning hyperboxes in the current list.

Note: The current input list of hyperboxes contains all existing hyperboxes including the hyperboxes repre-
senting the same class as the hyperbox at the position id_box. Therefore, to perform overlap testing, the list
of hyperboxes representing the class labels other than the class label of the id_box-th hyperbox should be first
filtered. Finally, the overlap test is only conducted on this filtered list.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] Lower bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

W
[array-like of shape (n_hyperboxes, n_features)] Upper bounds (minimum points) of all ex-
isting hyperboxes in the trained model.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes.

id_box
[int] id_extended_boxex of the hyperbox to be checked for overlap.

Returns

bool
Show if the input hyperbox overlaps with any hyperbox in the list of hyperboxes representing
the classes other than its class label.

2.1. utilitity functions 45

hyperbox-brain, Release 0.1.1

hbbrain.utils.adjust_hyperbox.is_two_hyperboxes_overlap_num_data_free_range_general(Vi, Wi,
Vk,
Wk)

Check if two hyperboxes Bi and Bk overlap with each other or not. This function uses a general formula con-
cerning the determination of an hyperbox within the overlaping region. If this hyperbox exists for all dimensions,
two hyperboxes Bi and Bk overlap, else no overlap occurs.

Parameters

Vi
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bi.

Wi
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bi.

Vk
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bk.

Wk
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bk.

Returns

is_overlap
[boolean] Show if two hyperboxes Bi and Bk overlap or not.

hbbrain.utils.adjust_hyperbox.is_two_hyperboxes_overlap_num_data_general(Vi, Wi, Vk, Wk)
Check if two hyperboxes Bi and Bk overlap with each other or not. This function uses a general formula built from
a shortest gap-based similarity measure. If this measure returns a value of 1, it means that these two hyperboxes
overlap with each other. Otherwise, two hyperboxes Bi and Bk do not overlap. See the references [1] and [2] for
more details.

Parameters

Vi
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bi.

Wi
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bi.

Vk
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bk.

Wk
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bk.

Returns

is_overlap
[boolean] Show if two hyperboxes Bi and Bk overlap or not.

46 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

References

For more details regarding the way of checking the overlap between two hyperboxes, please see the following
articles:

[1], [2]

hbbrain.utils.adjust_hyperbox.overlap_resolving_num_data(Vi, Wi, ci, Vk, Wk, ck, alpha=1e-05)
Resolve overlap between two hyperboxes Bi and Bk with coordinates being numerical features. For more details
regarding the way of contracting two overlapping hyperboxes, please see the article [1]:

Parameters

Vi
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bi.

Wi
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bi.

ci
[int] Class label of the hyperbox Bi.

Vk
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bk.

Wk
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bk.

ck
[int] Class label of the hyperbox Bk.

alpha
[float, optional, default=0.00001] A very small value is used to avoid the overlap between
two hyperboxes after contraction.

Returns

Vi
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bi after contraction.

Wi
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bi after contraction.

Vk
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bk after contraction.

Wk
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bk after contraction.

References

[1]

hbbrain.utils.adjust_hyperbox.overlap_resolving_num_data_free_range(Vi, Wi, ci, Vk, Wk, ck,
alpha=1e-05)

Resolve overlap between two hyperboxes Bi and Bk with coordinates being numerical features with unlimited
ranges. For more details regarding the way of contracting two overlapping hyperboxes, please see [1].

Parameters

Vi
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bi.

2.1. utilitity functions 47

hyperbox-brain, Release 0.1.1

Wi
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bi.

ci
[int] Class label of the hyperbox Bi.

Vk
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bk.

Wk
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bk.

ck
[int] Class label of the hyperbox Bk.

alpha
[float] A very small value is used to avoid the overlap between two hyperboxes after contrac-
tion.

Returns

Vi
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bi after contraction.

Wi
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bi after contraction.

Vk
[array-like of shape (n_features,)] Minimum coordinate of the hyperbox Bk after contraction.

Wk
[array-like of shape (n_features,)] Maximum coordinate of the hyperbox Bk after contraction.

References

[1]

2.1.3 utils.matrix_transformation

The hbbrain.utils.matrix_transformation submodule implements various functions for matrix transformation
measures.

hbbrain.utils.matrix_transformation.hashing(a, b)
Transform a pair of positive integer numbers into a unique number and this value is have commutation ability.

Parameters

a
[positive int] The first value.

b
[positive int] The second value.

Returns

c
[postivie int] A unique transformed value from the two input values.

48 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

hbbrain.utils.matrix_transformation.hashing_mat(A, B)
Transform each pair of items in two matrices A and B to a unique number

Parameters

A
[array-like of shape (n_samples, n_features)] The first matrix.

B
[array-like of shape (n_samples, n_features)] The second matrix.

Returns

C
[array-like of shape (n_samples, n_features)] A matrix that each element is a combination of
two corresponding elements in two input matrices at the same position.

hbbrain.utils.matrix_transformation.split_matrix(A, asimil_type='max', is_sort=True)
Split an input matrix A into a maxtrix with three columns:

• The first column contains the row indices of A

• The second column contains the column indices of A

• The third column contains the values corresponding to each row and column

Parameters

A
[ndarray of shape (n_samples, n_features)] Input matrix needs to be split.

asimil_type
[str, optional, default=’max’] Use the minimum or maximum values of 𝑎𝑖𝑗 or 𝑎𝑖𝑗 for the third
column if the matrix A is assymetric. Get a value of ‘max’ or ‘min’.

is_sort
[boolean, optional, default=True] Sort the values of the third column in a descending order
or not.

Returns

X
[ndarray of shape (n_samples, n_features)] The outcome of the input matrix A after transfor-
mation.

2.1.4 utils.drawing_func

The hbbrain.utils.drawing_func submodule implements various functions to support for drawing the hyperboxes.

hbbrain.utils.drawing_func.draw_box(drawing_canvas, lw_bound, up_bound, color, linewidth=1)
Drawing rectangular (2 dimensional inputs) or cube (3 and more dimensional inputs) shapes

Parameters

drawing_canvas
[axes.SubplotBase, or another subclass of Axes in the matplotlib library] Plotting object of
matplotlib.

2.1. utilitity functions 49

hyperbox-brain, Release 0.1.1

lw_bound
[array-like of shape (n_hyperboxes, n_features)] A matrix storing lower bounds of all hyper-
boxes that we want to show in the canvas.

up_bound
[array-like of shape (n_hyperboxes, n_features)] A matrix storing upper bounds of all hyper-
boxes that we want to show in the canvas.

color
[int, tupple, or array-like of shape (n_hyperboxes,)] A constant value or a tuple showing the
same color for all hyperboxes or a vector storing the colors corresponding to the hyperboxes
represented by lw_bound and up_bound

linewidth
[float, default=1] The width of hyperbox lines

Returns

handler
[list of Line2D or Line3D] A list of Line2D or Line3D depending on the number of dimen-
sions initialised in drawing_canvas to show the plotted objects.

hbbrain.utils.drawing_func.draw_box_parallel_coordinate(X, y, y_pred, plot_width=800,
plot_height=480,
file_path='par_coor.html')

Draw input samples in the form of parallel coordinates.

Parameters

X
[array like of shape (n_samples, n_features)] A matrix of samples needs to display in the
parallel coordinates.

y
[array like of shape (n_samples,)] Class labels of samples stored in X.

y_pred
[int] The samples with the same label as y_pred will be higlighted.

plot_width
[int, optional, default=800] Width of the window to show graphs.

plot_height
[int, optional, default=480] Height of the window to show graphs.

file_path
[str, optional, default=”par_cord.html”] Path including a file name to the location storing the
parallel coordinates graph.

Returns

None.

hbbrain.utils.drawing_func.draw_decision_boundary_2D(drawing_canvas, XX, YY, yhat)
Draw decision boundary in a 2-D plane

Parameters

drawing_canvas
[axes.SubplotBase, or another subclass of Axes in the matplotlib library] A ploting object of
matplotlib.

50 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

XX
[array-like of shape (Ny, Nx)] A coordinate matrix of the values on the X-axis created via
numpy.meshgrid. The values of X must be ordered monotonically.

YY
[array-like of shape (Ny, Nx)] A coordinate matrix of the values on the Y-axis created via
numpy.meshgrid. The values of X must be ordered monotonically.

yhat
[array-like of shape (n_points,)] Predicted class labels for all points in the grid generated by
XX and YY.

Returns

None.

hbbrain.utils.drawing_func.generate_grid_decision_boundary_2D(min_x=0, max_x=1, min_y=0,
max_y=1, step=0.01)

Generate a grid of points on the 2-D plane to determine the class label of these points from which decision
boundary can be deduced.

Parameters

min_x
[float, optional, default = 0] Starting coordinate of the 2-D grid on the X-axis.

max_x
[float, optional, default = 0] Ending coordinate of the 2-D grid on the X-axis.

min_y
[float, optional, default = 0] Starting coordinate of the 2-D grid on the Y-axis.

max_y
[float, optional, default = 0] Ending coordinate of the 2-D grid on the Y-axis.

step
[float, optional, default = 0.01] The distance between two next points.

Returns

a grid of points and coordinate matrices from coordinate vectors
grid

[array-like of shape (n_points, 2)] A matrix contains all pairs of points of a 2-D grid.

XX
[array-like of shape (Ny, Nx)] A coordinate matrix generated from a coordinate vector on
the X-axis defined by min_x, max_x, and step. Ny = (max_y - min_y)/step and Nx = (max_x
- min_x)/step.

YY
[array-like of shape (Ny, Nx)] A coordinate matrix generated from a coordinate vector on
the Y-axis defined by min_y, max_y, and step. Ny = (max_y - min_y)/step and Nx = (max_x
- min_x)/step.

Note: The number of elements n_points in the matrix grid is computed by
𝑚𝑎𝑥𝑥 −𝑚𝑖𝑛𝑥

𝑠𝑡𝑒𝑝
·

𝑚𝑎𝑥𝑦 −𝑚𝑖𝑛𝑦

𝑠𝑡𝑒𝑝
.

2.1. utilitity functions 51

hyperbox-brain, Release 0.1.1

hbbrain.utils.drawing_func.get_cmap(n, name='brg')
Get a colormap instance mapping each index in 0, 1,. . . , n-1 to a distinct RGB color.

Parameters

n
[int or None, default: None] If name is not already a Colormap instance and n is not None,
the colormap will be resampled to have n entries in the lookup table.

name
[matplotlib.colors.Colormap or str or None, default: ‘brg’] If a Colormap instance, it will be
returned. Otherwise, the name of a colormap known to Matplotlib, which will be resampled
by n.

Returns

Return a function that maps each index in 0, 1,. . . , n-1 to a distinct
RGB color.

Examples

>>> from hbbrain.utils.drawing_func import get_cmap
>>> cmap = get_cmap(2)
>>> cmap(0)
(0.0, 0.0, 1.0, 1.0)...

2.1.5 utils.dist_metrics

The hbbrain.utils.dist_metrics submodule implements various functions to compute distance-based metrics.

hbbrain.utils.dist_metrics.manhattan_distance(X, Y)
Compute Manhattan distance between two points X and Y

Parameters

X
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
coordinates of the first point.

Y
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
coordinates of the second point.

Returns

d
[float or ndarray of shape (n_samples,)] A scalar value or a vector stores the resulting Man-
hattan distance values.

hbbrain.utils.dist_metrics.manhattan_distance_with_missing_val(X1, X2, Y1, Y2)
Compute Manhattan distance between the central points of X1, X2 and Y1, Y2.

Note: X1, X2, Y1, Y2 can contain missing values. In that case, X1j=1+EPSILON_MISSING_VAL > X2j=-
EPSILON_MISSING_VAL and Y1j=1+EPSILON_MISSING_VAL > Y2j=-EPSILON_MISSING_VAL. The Man-
hattan distance is only computed for the dimensions without missing values.

52 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Parameters

X1
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
lower bounds of the first point.

X2
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
upper bounds of the first point.

Y1
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
lower bounds of the second point.

Y2
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
upper bounds of the second point.

Returns

result
[ndarray of shape (n_samples,)] A vector stores the resulting Manhattan distance values.

hbbrain.utils.dist_metrics.manhattan_distance_with_missing_val_free_range(X1, X2, Y1, Y2,
MIN_RANGE,
MAX_RANGE)

Compute Manhattan distance between the central points of X1, X2 and Y1, Y2. The coordinates are not limited
by ranges.

Note: X1, X2, Y1, Y2 can contain missing values. In that case, X1j=MAX_RANGE > X2j=MIN_RANGE and
Y1j=MAX_RANGE > Y2j=MIN_RANGE. The Manhattan distance is only computed for the dimensions without
missing values.

Parameters

X1
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
lower bounds of the first point.

X2
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
upper bounds of the first point.

Y1
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
lower bounds of the second point.

Y2
[ndarray of shape (n_features,) or (n_samples, n_features)] Vector or matrix contains the
upper bounds of the second point.

MIN_RANGE
[float] The minimum value of floating numbers for missing features.

MAX_RANGE
[float] The maximum values of floating numbers for missing features.

Returns

2.1. utilitity functions 53

hyperbox-brain, Release 0.1.1

result
[ndarray of shape (n_samples,)] A vector stores the resulting Manhattan distance values.

hbbrain.utils.dist_metrics.rfmnn_distance(X, V, W)

Compute the distance from the input pattern to the list of existing hyperboxes represented by minimum points V
and maximum points W.

Parameters

X
[ndarray of shape (n_features,) or (n_hyperboxes, n_features)] Vector or matrix contains the
coordinates of the input pattern.

V
[ndarray of shape (n_hyperboxes, n_features)] Lower bounds of all existing hyperboxes.

W
[ndarray of shape (n_hyperboxes, n_features)] Upper bounds of all existing hyperboxes.

Returns

dist
[ndarray of shape (n_hyperboxes,)] The distance values from the input pattern to all existing
hyperboxes.

2.1.6 utils.model_storage

The hbbrain.utils.model_storage submodule implements various functions to store a trained model to the local
file and load it from the file.

hbbrain.utils.model_storage.load_model(filename)
Load a stored model from a file

Parameters

filename
[str] The path to file storing the trained model.

Returns

model
[object] An model stored in the file.

hbbrain.utils.model_storage.load_multi_models(filename)
Deserialize a file containing many trained models

Parameters

filename
[str] The path to file storing the trained model.

Yields

objects
An iterator through many models stored in the file.

hbbrain.utils.model_storage.store_model(model, filename)
Store an trained model or a list of trained models to the file

Parameters

54 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

model
[object] A trained model or a list of the trained models needs to store.

filename
[str] The path to file storing the trained models.

Returns

None.

2.2 base

2.2.1 base.base_estimator

Base class for all hyperbox-based estimators.

class hbbrain.base.base_estimator.BaseHyperboxClassifier(theta=0.5, is_draw=False, V=None,
W=None, C=None)

Base class for all hyperbox-based estimators in hyperbox-brain.

Note: All estimators should specify all the parameters that can be set at the class level in their __init__ as
explicit keyword arguments (no *args or **kwargs). This class only initialises all common parameters for
hyperbox-based estimators.

Parameters

theta
[float or ndarray of shape (n_features,), optional, defaut = 0.5] A maximum hyperbox size
parameter for each dimension.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

is_draw
[boolean, optional, default = False] A parameter is used to indicate whether the process
of hyperbox building can be dynamically displayed on a canvas or not. This functionality
displays hyperboxes in the form of 2D or 3D. In the case that the number of dimensions is
higher than 3, only the three features are shown.

V
[array-like of shape (n_hyperboxes, n_features), default = an empty ndarray] A matrix
stores all minimal coordinates of all existing hyperboxes, in which each row is a minimal
coordinate of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_features), default = an empty ndarray] A matrix
stores all maximal coordinates of all existing hyperboxes, in which each row is a maximal
coordinate of a hyperbox.

C
[ndarray of shape (n_hyperboxes,), default = an empty ndarray] An array contains all class
lables for all existing hyperboxes.

Attributes

2.2. base 55

hyperbox-brain, Release 0.1.1

n_hyperboxes
[int] Number of hyperboxes built during fit.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data.
get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-

based model
get_params([deep]) Get parameters for this estimator.
initialise_canvas_graph ([n_dims, ...]) Initialise a canvas to draw hyperboxes
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

delay(delay_constant=0.01)
Delay a time period to display hyperboxes

Parameters

delay_constant
[float] Delay time period to display hyperboxes on the canvas

draw_hyperbox_and_boundary(window_name='Hyperbox-based classifier and its decision boundaries',
min_range=0, max_range=1)

Draw the existing hyperboxes and their decision boundaries among classes

Note: This function only works on 2-dimensional datasets

Parameters

window_name
[str, optional, default=”Hyperbox-based classifier and its decision boundaries”] Name of
plotting window showing hyperboxes and their decision boundaries.

min_range
[float, optional, default=0] Minimum value in each axis.

max_range
[float, optional, default=1] Maximum value in each axis.

Returns

None.

fit(X, y)
Fit the model according to the given training data.

Parameters

56 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
Fitted estimator.

get_n_hyperboxes()

Get number of hyperboxes in the trained hyperbox-based model

Returns

int
Number of hyperboxes in the trained hyperbox-based classifier.

initialise_canvas_graph(n_dims=2, figure_name='A trained hyperbox-based learning model',
min_range=0, max_range=1)

Initialise a canvas to draw hyperboxes

Parameters

n_dims
[int, optional, default=2] The number of dimensions of hyperboxes shown in the canvas
(2D or 3D).

figure_name
[str, optional, default=’A trained hyperbox-based learning model’] Title name of the win-
dow containing hyperboxes.

fig_num
[int, optional, default=1] Index of canvas.

min_range
[float, optional, default=0] Minimum value in each axis.

max_range
[float, optional, default=1] Maximum value in each axis.

Returns

drawing_canvas
[axes.SubplotBase, or another subclass of Axes in the matplotlib library] Plotting object of
matplotlib.

show_sample_explanation(xl, xu, dict_min_point_classes, dict_max_point_classes, y_pred,
type_plot='par_cord', plot_width=800, plot_height=480, min_range=0,
max_range=1, file_path='par_cord.html')

Show explanation for predicted results of an input pattern under the form of parallel coordinates or hyper-
boxes in 2D or 3D planes.

Note: This function only works on numerical features.

Parameters

2.2. base 57

hyperbox-brain, Release 0.1.1

xl
[array-like of shape (n_features,)] Lower bound of numerical features of the input pattern
which needs to show explanation.

xu
[array-like of shape (n_features,)] Upper bound of numerical features of an input pattern
which needs to show explanation.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class.

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class.

y_pred
[int] The predicted class of the input pattern.

type_plot
[str, optional, default=”par_cord”] Type of graph to show explanation. If the value is
par_cord, a parallel coordinate is used. Otherwise, hyperboxes in 2D or 3D planes are
shown.

plot_width
[int, optional, default=800] Width of the window to show parallel coordinates.

plot_height
[int, optional, default=480] Height of the window to show parallel coordinates.

min_range
[float, optional, default=0] Minimum value in the axes to show hyperboxes in 2D or 3D
planes.

max_range
[float, optional, default=1] Maximum value in the axes to show hyperboxes in 2D or 3D
planes.

file_path
[str, optional, default=”par_cord.html”] Path including a file name to the location storing
the parallel coordinates graph.

Returns

None.

2.2.2 base.base_gfmm_estimator

Base class and functions for all general fuzzy min-max neural network estimators.

class hbbrain.base.base_gfmm_estimator.BaseGFMMClassifier(theta=0.5, gamma=1, is_draw=False,
V=None, W=None, C=None)

Base class for all hyperbox-based estimators in the hyperbox-brain.

Note: All estimators should specify all the parameters that can be set at the class level in their __init__ as
explicit keyword arguments (no *args or **kwargs). This class only initialises all common parameters for

58 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

hyperbox-based estimators.

Parameters

theta
[float or ndarray of shape (n_features,), optional, defaut = 0.5] A maximum hyperbox size
parameter for each dimension.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

is_draw
[boolean, optional, default = False] A parameter is used to indicate whether the process
of hyperbox building can be dynamically displayed on a canvas or not. This functionality
displays hyperboxes in the form of 2D or 3D. In the case that the number of dimensions is
higher than 3, only the three features are shown.

V
[array-like of shape (n_hyperboxes, n_features), default = an empty ndarray] A matrix
stores all minimal coordinates of all existing hyperboxes, in which each row is a minimal
coordinate of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_features), default = an empty ndarray] A matrix
stores all maximal coordinates of all existing hyperboxes, in which each row is a maximal
coordinate of a hyperbox.

C
[ndarray of shape (n_hyperboxes,), default = an empty ndarray] An array contains all class
lables for all existing hyperboxes.

Attributes

n_hyperboxes
[int] Number of hyperboxes built during fit.

2.2. base 59

hyperbox-brain, Release 0.1.1

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data.
get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-

based model
get_params([deep]) Get parameters for this estimator.
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

predict(X)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the minimum
Manhattan distance between the input patter 𝑋𝑖 and the central points of winner hyperboxes are used to
find the final winner hyperbox that its class label is used for predicting the class label of the input pattern
𝑋𝑖.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

predict_proba(X)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of the membership value of the representative hyperbox of
that class and the sum of all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

60 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class membership values of the input samples X.

The predicted class membership value is the membership value of the representative hyperbox of that class.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class membership values of the input sam-
ples. The order of the classes corresponds to that in ascending integers of class labels.

hbbrain.base.base_gfmm_estimator.convert_format_missing_input_zero_one(Xl, Xu, y=None)
Convert missing values in the features and labels under the form of NaN values to the form used in the algorithms

Parameters

Xl
[array-like of shape (n_samples, n_features)] A matrix containing lower bound values of fea-
tures and samples, where n_samples is the number of samples and n_features is the number
of features.

Xu
[array-like of shape (n_samples, n_features)] A matrix containing upper bound values of fea-
tures and samples, where n_samples is the number of samples and n_features is the number
of features.

y
[array-like of shape (n_samples,)] Target vector relative to [Xl, Xu].

Returns

Xl_out
[array-like of shape (n_samples, n_features)] The transformed matrix of the input matrix Xl.

Xu_out
[array-like of shape (n_samples, n_features)] The transformed matrix of the input matrix Xu.

y_out
[array-like of shape (n_samples, n_features)] The transformed vector of the input vector y.

hbbrain.base.base_gfmm_estimator.is_contain_missing_value(X)
Check whether an input vector X contains any missing values.

Parameters

X
[array-like of shape (n_features,) or (n_samples, n_features)] A input vector for which we
want to check the existence of missing values.

Returns

bool
The output value showing whether the input vector X contains missing values or not.

2.2. base 61

hyperbox-brain, Release 0.1.1

hbbrain.base.base_gfmm_estimator.predict_with_manhattan(V, W, C, Xl, Xu, g=1)
Predict class labels for samples in X represented in the form of invervals [Xl, Xu]. This is a common function to
determine the right class labels for X wrt. a trained hyperbox-based classifier represented by [V, W, C]. It uses the
winner-takes-all principle to predict class labels for each sample in X by assigning the class label of the sample
to the class label of the hyperbox with the maximum membership value to that sample. It will use a Manhattan
distance in the case of many hyperboxes with different classes having the same maximum membership value.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a minimal point of a
hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a maximal point of a
hyperbox.

C
[ndarray of shape (n_hyperboxes,)] An array contains all class lables for all hyperboxes of a
trained hyperbox-based model.

Xl
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of input
patterns for which we want to predict the targets.

Xu
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of input
patterns for which we want to predict the targets.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each dimension.

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

hbbrain.base.base_gfmm_estimator.predict_with_probability(V, W, C, N_samples, Xl, Xu, g=1)
Predict class labels for samples in X represented in the form of invervals [Xl, Xu]. This is a common function to
determine the right class labels for X wrt. a trained hyperbox-based classifier represented by [V, W, C]. It uses the
winner-takes-all principle to predict class labels for each sample in X by assigning the class label of the sample
to the class label of the hyperbox with the maximum membership value to that sample. It will use a probability
formula based on the number of samples included in each winner hyperbox in the case of many hyperboxes with
different classes having the same maximum membership value.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a minimal point of a
hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a maximal point of a
hyperbox.

62 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

C
[ndarray of shape (n_hyperboxes,)] An array contains all class lables for all hyperboxes of a
trained hyperbox-based model.

N_samples
[ndarray of shape (n_hyperboxes,)] An array contains number of samples included in each
hyperbox of a trained hyperbox-based model.

Xl
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of input
patterns for which we want to predict the targets.

Xu
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of input
patterns for which we want to predict the targets.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each dimension.

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

2.2.3 base.base_fmnn_estimator

Base classes for all fuzzy min-max neural network estimators and their improved versions.

class hbbrain.base.base_fmnn_estimator.BaseFMNNClassifier(theta=0.5, gamma=1, is_draw=False,
V=None, W=None, C=None)

Base class for all hyperbox-based estimators in hyperbox-brain.

Note: All estimators should specify all the parameters that can be set at the class level in their __init__ as
explicit keyword arguments (no *args or **kwargs). This class only initialises all common parameters for
hyperbox-based estimators.

Parameters

theta
[float or ndarray of shape (n_features,), optional, defaut = 0.5] A maximum hyperbox size
parameter for each dimension.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each dimension.

is_draw
[boolean, optional, default = False] A parameter is used to indicate whether the process
of hyperbox building can be dynamically displayed on a canvas or not. This functionality
displays hyperboxes in the form of 2D or 3D. In the case that the number of dimensions is
higher than 3, only the three features are shown.

V
[array-like of shape (n_hyperboxes, n_features), default = an empty ndarray] A matrix

2.2. base 63

hyperbox-brain, Release 0.1.1

stores all minimal coordinates of all existing hyperboxes, in which each row is a minimal
coordinate of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_features), default = an empty ndarray] A matrix
stores all maximal coordinates of all existing hyperboxes, in which each row is a maximal
coordinate of a hyperbox.

C
[ndarray of shape (n_hyperboxes,), default = an empty ndarray] An array contains all class
lables for all existing hyperboxes.

Attributes

n_hyperboxes
[int] Number of hyperboxes built during fit.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data.
get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-

based model
get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

get_sample_explanation(x)
Get useful information for explaining the reason behind the predicted result for the input pattern

Parameters

x
[ndarray of shape (n_feature,)] The input pattern which needs to be explained.

Returns

y_pred
[int] The predicted class of the input pattern

64 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class

predict(X)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the minimum
Manhattan distance between the input patter 𝑋𝑖 and the central points of winner hyperboxes are used to
find the final winner hyperbox that its class label is used for predicting the class label of the input pattern
𝑋𝑖.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

predict_proba(X)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of the membership value of the representative hyperbox of
that class and the sum of all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class membership values of the input samples X.

The predicted class membership value is the membership value of the representative hyperbox of that class.

Parameters

2.2. base 65

hyperbox-brain, Release 0.1.1

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class membership values of the input sam-
ples. The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

hbbrain.base.base_fmnn_estimator.predict_with_manhattan_fmnn(V, W, C, X, g=1)
Predict class labels for samples in X.

Note: This is a common function to determine the right class labels for X with regard to a trained hyperbox-
based classifier represented by [V, W, C]. It uses the winner-takes-all principle to predict class labels for each
sample in X by assigning the class label of the sample to the class label of the hyperbox with the maximum
membership value to that sample. It will use a Manhattan distance in the case of many hyperboxes with different
classes having the same maximum membership value.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a minimal point of a
hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a maximal point of a
hyperbox.

C
[ndarray of shape (n_hyperboxes,)] An array contains all class lables for all hyperboxes of a
trained hyperbox-based model.

66 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

X
[array-like of shape (n_samples, n_features)] The data matrix contains input patterns for
which we want to predict the targets.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each dimension.

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

2.2.4 base.base_ensemble

Base functions and classes for ensemble models using hyperbox-based models.

class hbbrain.base.base_ensemble.BaseEnsemble(base_estimator, *, n_estimators=10,
estimator_params=())

Base class for all ensemble classes. Warning: This class should not be used directly. Use derived classes instead.

Parameters

base_estimator
[object] The base estimator from which the ensemble is built.

n_estimators
[int, default=10] The number of estimators in the ensemble.

estimator_params
[list of str, default=tuple()] The list of attributes to use as parameters when instantiating a
new base estimator. If none are given, default parameters are used.

Attributes

base_estimator_
[estimator] The base estimator from which the ensemble is grown.

estimators_
[list of estimators] The collection of fitted base estimators.

Methods

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

2.2. base 67

hyperbox-brain, Release 0.1.1

2.3 mixed-data learners

2.3.1 mixed_data.eiol_gfmm

General fuzzy min-max neural network trained by the extended improved incremental learning algorithm for mixed
attribute data.

class hbbrain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM(theta=0.5, gamma=1, delta=0.5,
alpha=0.5, V=None, W=None,
D=None, C=None,
N_samples=None)

Bases: BaseGFMMClassifier

Extended improved online learning algorithm for a general fuzzy min-max neural network with mixed-attribute
data.

This algorithm can handle the datasets with both continuous and categorical features. It uses the change in
the entropy values of categorical features of the samples contained in a hyperbox to determine if the current
hyperbox can be expanded to include the categorical values of a new training instance. An extended architecture
of the original general fuzzy min-max neural network and its new membership function are also introduced for
mixed-attribute data.

See [1] for more detailed information regarding this extended improved online learning algorithm.

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for continuous features.

gamma
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continuous
feature.

delta
[float, optional, default=0.5] A maximum entropy changing threshold for categorical values
after expansion of the existing hyperbox to cover an input pattern.

alpha
[float, optional, default=0.5] A trade-off factor regulating the contribution level of continous
features part and categorical features part to the membership score.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores a special structure for
categorical features of all existing hyperboxes. Each element in D stores a set of symbolic
values with their cardinalities for the j-th categorical dimension of a given hyperbox.

68 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

N_samples
[array-like of shape (n_hyperboxes,)] A vector stores the number of samples fully included
in each existing hyperbox.

References

[1]

Examples

>>> from hbbrain.mixed_data.eiol_gfmm import ExtendedImprovedOnlineGFMM
>>> from hbbrain.datasets import load_japanese_credit
>>> X, y = load_japanese_credit()
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> numerical_features = [1, 2, 7, 10, 13, 14]
>>> categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12]
>>> scaler.fit(X[:, numerical_features])
MinMaxScaler()
>>> X[:, numerical_features] = scaler.transform(X[:, numerical_features])
>>> clf = ExtendedImprovedOnlineGFMM(theta=0.1, delta=0.6)
>>> clf.fit(X, y, categorical_features)
>>> print("Number of hyperboxes = %d"%clf.get_n_hyperboxes())
Number of hyperboxes = 613
>>> clf.predict(X[[10, 100]])
array([1, 0])

Attributes

categorical_features_
[int array of shape (n_cat_features,)] Indices of categorical features in the training data and
hyperboxes.

continuous_features_
[int array of shape (n_continuous_features,)] Indices of continuous features in the training
data and hyperboxes.

is_exist_continuous_missing_value
[boolean] Is there any missing values in continuous features in the training data.

elapsed_training_time
[float] Training time in seconds.

2.3. mixed-data learners 69

hyperbox-brain, Release 0.1.1

Methods

compute_increasing_entropy(...) Compute the increasing degree in the entropy for each
categorical feature in both the current hyperbox and
that hyperbox after extended.

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y[, categorical_features, ...]) Build a general fuzzy min-max neural network from
the training set (X, y) using the extended improved
online learning algorithm.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern repre-
sented by upper and lower bounds for continous fea-
tures together with the categorical bounds for the cat-
egorical features.

initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X[, type_boundary_handling]) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X in-

cluding both continuous and categorical features.
predict_with_membership(X) Predict class membership values of the input samples

X including both categorical and continuous features.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

compute_increasing_entropy(cat_extended_hyperbox, cat_cur_hyperbox)
Compute the increasing degree in the entropy for each categorical feature in both the current hyperbox and
that hyperbox after extended.

Parameters

cat_extended_hyperbox
[array-like of shape (n_cat_features,)] Categorical features in the current hyperbox after
extended. Each dimension contains a dictionary with the key being categorical values and
value being the number of samples in the hyperbox containing the given categorical value
in that dimension.

cat_cur_hyperbox
[array-like of shape (n_cat_features,)] Categorical features in the current hyperbox. Each
dimension contains a dictionary with the key being categorical values and value being the
number of samples in the hyperbox containing the given categorical value in that dimen-
sion.

Returns

70 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

increased_entropy
[array-like of shape (n_cat_features,)] The increased entropy value for each categorical
dimension after extended.

fit(X, y, categorical_features=None, N_incl_samples=None, type_cat_expansion=0)
Build a general fuzzy min-max neural network from the training set (X, y) using the extended improved
online learning algorithm.

Parameters

X
[array-like of shape (n_samples, n_features) or (2*n_samples, n_features)] The training
input samples including both continuous and categorical features. If the number of rows in
X is 2*n_samples, the first n_samples rows contain lower bounds of input patterns and the
rest n_samples rows contain upper bounds.

y
[array-like of shape (n_samples,)] The class labels.

categorical_features
[a list of int, optional, default=None] Indices of categorical features in the training set. If
None, there is no categorical feature.

N_incl_samples
[array-like of shape (n_samples,), optional, default=None] A vector stores numbers of sam-
ples fully contained in the input patterns in the case that input patterns form hyperboxes.

type_cat_expansion
[int, optional, default=0] Type of the expansion condition for categorical features. If
type_cat_expansion gets the value of 0, then the categorical feature expansion condition
regarding the maximum entropy changing threshold will be applied for every categorical
dimension. Otherwise, this expansion condition will be applied for the average entropy
changing values of all categorical features.

Returns

self
[object] Fitted estimator.

get_n_hyperboxes()

Get number of hyperboxes in the trained hyperbox-based model

Returns

int
Number of hyperboxes in the trained hyperbox-based classifier.

get_sample_explanation(x)
Get useful information for explaining the reason behind the predicted result for the input pattern represented
by upper and lower bounds for continous features together with the categorical bounds for the categorical
features.

Parameters

x
[ndarray of shape (n_feature,)] The input pattern which needs to be explained includes both
continuous features and categorical features.

Returns

y_pred
[int] The predicted class of the input pattern

2.3. mixed-data learners 71

hyperbox-brain, Release 0.1.1

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of the hyperbox corresponding to that class.

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of the hyperbox corresponding to that class.

dict_cat_bound_classes: dictionary
A dictionary stores all categorical bounds of categorical features for the hyperboxes having
the maximum membership value for each class. The key is the class label and the value
is the categorical bound of categorical features for the hyperboxes corresponding to each
class.

predict(X, type_boundary_handling=1)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the probability
generated by number of samples included in winner hyperboxes and membership values or the Manhattan
distance between the central point of winner hyperboxes and the input sample is used to find the final winner
hyperbox that its class label is used for predicting the class label of the input pattern 𝑋𝑖.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling many
winner hyperboxes, i.e., PROBABILITY_MEASURE or MANHATTAN_DIS

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

predict_proba(X)
Predict class probabilities of the input samples X including both continuous and categorical features.

The predicted class probability is the fraction of the membership value of the representative hyperbox of
that class and the sum of all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

72 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class membership values of the input samples X including both categorical and continuous features.

The predicted class membership value is the membership value of the representative hyperbox of that class.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class membership values of the input sam-
ples. The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False, type_boundary_handling=1)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains both continous and
categorical features of validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, otherwise the decision for
keeping or removing based on the classification accuracy on the validation dataset.

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling samples
located on the boundary.

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

hbbrain.mixed_data.eiol_gfmm.impute_missing_categorical_features(X_cat)
Impute missing values in categorical features by a default value.

Parameters

X_cat
[array-like of shape (n_samples, n_cat_features)] Input matrix contains categorical features
only.

Returns

2.3. mixed-data learners 73

hyperbox-brain, Release 0.1.1

X_cat
[array-like of shape (n_samples, n_cat_features)] The resulting matrix contains categorical
features of which missing categorical values have been imputed by a default value.

hbbrain.mixed_data.eiol_gfmm.predict_with_manhattan_mixed_data(V, W, D, C, Xl, Xu, X_cat, g=1,
alpha=0.5)

Predict class labels for samples in X represented in the form of invervals [Xl, Xu] for continuous features and
X_cat for categorical features. This is a common function to determine the right class labels for X wrt. a trained
hyperbox-based classifier represented by [V, W, D, C]. It uses the winner-takes-all principle to predict class
labels for each sample in X by assigning the class label of the sample to the class label of the hyperbox with the
maximum membership value to that sample. It will use a Manhattan distance for continous features in the case
of many hyperboxes with different classes having the same maximum membership value.

Parameters

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points for all continuous features of all hyperboxes of a trained hyperbox-based model, in
which each row is a minimal point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points for all continuous features of all hyperboxes of a trained hyperbox-based model, in
which each row is a maximal point of a hyperbox.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all categorical bounds
for categorical features of all hyperboxes of a trained hyperbox-based model, in which each
row is a categorical bound of a hyperbox.

C
[ndarray of shape (n_hyperboxes,)] An array contains all class lables for all hyperboxes of a
trained hyperbox-based model.

Xl
[array-like of shape (n_samples, n_continuous_features)] The data matrix contains lower
bounds for continuous features of input patterns for which we want to predict the targets.

Xu
[array-like of shape (n_samples, n_continuous_features)] The data matrix contains upper
bounds for continuous features of input patterns for which we want to predict the targets.

X_cat
[array-like of shape (n_samples, n_cat_features)] The data matrix contains categorical
bounds for categorical features of input patterns for which we want to predict the targets.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each continuous dimension.

alpha
[float, optional, default=0.5] The trade-off weighting factor between the impacts of categor-
ical features and numerical features on the outputs of membership values.

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

74 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

hbbrain.mixed_data.eiol_gfmm.predict_with_probability_mixed_data(V, W, D, C, N_samples, Xl, Xu,
X_cat, g=1, alpha=0.5)

Predict class labels for samples in X represented in the form of invervals [Xl, Xu]. This is a common function to
determine the right class labels for X wrt. a trained hyperbox-based classifier represented by [V, W, C]. It uses the
winner-takes-all principle to predict class labels for each sample in X by assigning the class label of the sample
to the class label of the hyperbox with the maximum membership value to that sample. It will use a probability
formula based on the number of samples included in each winner hyperbox in the case of many hyperboxes with
different classes having the same maximum membership value.

Parameters

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points of all hyperboxes of a trained hyperbox based model, each row is a minimal point
for continuous features of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points of all hyperboxes of a trained hyperbox-based model, each row is a maximal point for
continuous features of a hyperbox.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all maximal points of
all hyperboxes of a trained hyperbox based model, each row is a categorical bound for a
hyperbox.

C
[ndarray of shape (n_hyperboxes,)] An array contains all class lables for all hyperboxes of a
trained hyperbox-based model.

N_samples
[ndarray of shape (n_hyperboxes,)] An array contains number of samples included in each
hyperbox of a trained hyperbox-based model.

Xl
[array-like of shape (n_samples, n_continuous_features)] The data matrix contains lower
bounds of input patterns for which we want to predict the targets.

Xu
[array-like of shape (n_samples, n_continuous_features)] The data matrix contains upper
bounds of input patterns for which we want to predict the targets.

X_cat
[array-like of shape (n_samples, n_cat_features)] The data matrix contains categorical
bounds of input categorical patterns for which we want to predict the targets.

g
[float or array-like of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continuous
dimension.

alpha
[float, optional, default=0.5] The trade-off weighting factor between the impacts of categor-
ical features and numerical features on the outputs of membership values.

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

2.3. mixed-data learners 75

hyperbox-brain, Release 0.1.1

2.3.2 mixed_data.freq_cat_onln_gfmm

General fuzzy min-max neural network trained by the batch incremental learning algorithm, in which categorical fea-
tures are encoded using the ordinal encoding method and the similarity among categorical values are computed using
their frequency of occurence with respect to all class labels in a training set.

class hbbrain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM(theta=0.5, theta_min=1, eta=0.5,
gamma=1, alpha=0.9, V=None,
W=None, E=None, F=None,
C=None)

Bases: BaseHyperboxClassifier

Batch Incremental learning algorithm with mixed-attribute data for a general fuzzy min-max neural network,
in which categorical features are encoded using the ordinal encoding method and the similarity degrees among
categorical values are computed using their frequency of occurence with respect to all class labels in a training
set.

This algorithm uses a distance measure between any two values of a categorical variable based on the occurrence
probability of such categorical values with respect to the values of the class variable. This distance is then
normalised and used to compute the membership values for categorical features in conjunction with membership
values of continuous features to generate the final membership values for mixed-attribute data.

See [1] for more detailed information regarding this batch incremental learning algorithm.

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for continuous features.

theta_min
[float, optional, default=1] Minimum value of the maximum hyperbox size for continuous
features so that the training loop is still performed. If the value of theta_min is larger than
the value of theta, it will be automatically assigned a value equal to theta.

gamma
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continuous
feature.

eta
[float, optional, default=0.5] Maximum hyperbox size for the categorical features.

alpha
[float, optional, default=0.9] Multiplier factor to reduce the value of maximum hyperbox size
after each training loop.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

E
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all lower bounds for
categorical features of all existing hyperboxes, in which each row is a lower bound of a
hyperbox.

76 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

F
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all upper bounds for
categorical features of all existing hyperboxes, in which each row is an upper bound of a
hyperbox.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

References

[1]

Examples

>>> from hbbrain.mixed_data.freq_cat_onln_gfmm import FreqCatOnlineGFMM
>>> from hbbrain.datasets import load_japanese_credit
>>> X, y = load_japanese_credit()
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> numerical_features = [1, 2, 7, 10, 13, 14]
>>> categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12]
>>> scaler.fit(X[:, numerical_features])
MinMaxScaler()
>>> X[:, numerical_features] = scaler.transform(X[:, numerical_features])
>>> clf = FreqCatOnlineGFMM(theta=0.1, eta=0.6)
>>> clf.fit(X, y, categorical_features)
>>> print("Number of hyperboxes = %d"%clf.get_n_hyperboxes())
Number of hyperboxes = 416
>>> clf.predict(X[[10, 100]])
array([1, 0])

Attributes

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

categorical_features_
[int array of shape (n_cat_features,)] Indices of categorical features in the training data and
hyperboxes.

continuous_features_
[int array of shape (n_continuous_features,)] Indices of continuous features in the training
data and hyperboxes.

encoder_
[sklearn.preprocessing.OrdinalEncoder] An ordinal encoder was used to encode categorical
features.

is_exist_continuous_missing_value
[boolean] Is there any missing values in continuous features in the training data.

2.3. mixed-data learners 77

hyperbox-brain, Release 0.1.1

elapsed_training_time
[float] Training time in seconds.

n_passes
[int] Number of training loops.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y[, categorical_features]) Build a general fuzzy min-max neural network from
the training set (X, y) using the original incremen-
tal learning algorithm, in which categorical features
are encoded using the ordinal encoding method and
the similarity among categorical values are computed
using their frequency of occurence with respect to all
class labels in a training set.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern repre-
sented by upper and lower bounds for continous fea-
tures together with the lower and upper bounds for the
categorical features.

initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
is_satisfied_cat_expansion_conds(Ej, Fj,
x_cat)

Check whether the expansion condition for categori-
cal features x_cat of an input pattern can be covered
by categorical bounds of the hyperbox Bj with the cat-
egorical features stored in the lower bound Ej and the
upper bound Fj.

predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X in-

cluding both continuous and categorical features.
predict_with_membership(X) Predict class membership values of the input samples

X including both categorical and continuous features.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

fit(X, y, categorical_features=None)
Build a general fuzzy min-max neural network from the training set (X, y) using the original incremental
learning algorithm, in which categorical features are encoded using the ordinal encoding method and the
similarity among categorical values are computed using their frequency of occurence with respect to all
class labels in a training set.

Parameters

78 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

X
[array-like of shape (n_samples, n_features) or (2*n_samples, n_features)] The training
input samples including both continuous and categorical features. If the number of rows in
X is 2*n_samples, the first n_samples rows contain lower bounds of input patterns and the
rest n_samples rows contain upper bounds.

y
[array-like of shape (n_samples,)] The class labels.

categorical_features
[a list of int, optional, default=None] Indices of categorical features in the training set. If
None, there is no categorical feature.

Returns

self
[object] Fitted estimator.

get_n_hyperboxes()

Get number of hyperboxes in the trained hyperbox-based model

Returns

int
Number of hyperboxes in the trained hyperbox-based classifier.

get_sample_explanation(x)
Get useful information for explaining the reason behind the predicted result for the input pattern repre-
sented by upper and lower bounds for continous features together with the lower and upper bounds for the
categorical features.

Parameters

x
[ndarray of shape (n_feature,)] The input pattern which needs to be explained includes both
continuous features and categorical features.

Returns

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of the hyperbox corresponding to that class.

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of the hyperbox corresponding to that class.

dict_min_point_cat_classes: dictionary
A dictionary stores all lower bounds of categorical features for the hyperboxes having the
maximum membership value for each class. The key is the class label and the value is the
lower bound of categorical features for the hyperboxes corresponding to each class.

2.3. mixed-data learners 79

hyperbox-brain, Release 0.1.1

dict_max_point_cat_classes: dictionary
A dictionary stores all upper bounds of categorical features for the hyperboxes having the
maximum membership value for each class. The key is the class label and the value is the
upper bound of categorical features for the hyperboxes corresponding to each class.

is_satisfied_cat_expansion_conds(Ej, Fj, x_cat)
Check whether the expansion condition for categorical features x_cat of an input pattern can be covered by
categorical bounds of the hyperbox Bj with the categorical features stored in the lower bound Ej and the
upper bound Fj.

Parameters

Ej
[array-like of shape (n_cat_features,)] Lower bound of categorical features in the hyperbox
Bj which can be extended to cover the input pattern.

Fj
[array-like of shape (n_cat_features,)] Upper bound of categorical features in the hyperbox
Bj which can be extended to cover the input pattern.

x_cat
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

Returns

bool
If True, the categorical features in Dj are satisfied with the expansion conditions for the
categorical feature so that it can be expanded to cover the input pattern. Otherwise, the
conditions for the categorical features are not met.

predict(X)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the minimum
Manhattan distance between continous featurers of𝑋𝑖 and the central points of continous features of winner
hyperboxes are used to find the final winner hyperbox that its class label is used for predicting the class
label of the input pattern 𝑋𝑖. If there are only categorical features but many winner hyperboxes belonging
to different classes, a random selection will be used to choose the final class label.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

predict_proba(X)
Predict class probabilities of the input samples X including both continuous and categorical features.

The predicted class probability is the fraction of the membership value of the representative hyperbox of
that class and the sum of all membership values of all representative hyperboxes of all classes.

80 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class membership values of the input samples X including both categorical and continuous features.

The predicted class membership value is the membership value of the representative hyperbox of that class.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class membership values of the input sam-
ples. The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains both continous and
categorical features of validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, otherwise the decision for
keeping or removing based on the classification accuracy on the validation dataset.

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

hbbrain.mixed_data.freq_cat_onln_gfmm.compute_similarity_among_categorical_values(X_cat, y)
Compute the similarity among pairs of categorical values for each categorical feature.

Parameters

X_cat
[array-like of shape (n_samples, n_cat_features)] Input patterns contain only categorical fea-
tures.

2.3. mixed-data learners 81

hyperbox-brain, Release 0.1.1

y
[array-like of shape (n_samples,)] The class label corresponds to each input pattern.

Returns

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

hbbrain.mixed_data.freq_cat_onln_gfmm.ordinal_encode_categorical_features(X, categori-
cal_features,
encoder=None)

Encode categorical features as an integer array.

Parameters

X
[array-like of shape (n_samples, n_features)] An input data matrix includes both continuous
and categorical features.

categorical_features
[a list of integer] Indices of categorical features in X.

encoder
[sklearn.preprocessing.OrdinalEncoder, optional, default=None] An existing ordinal en-
coder is used to encode categorical features.

Returns

X
[array-like of shape (n_samples, n_features)] An input data matrix with the encoded categor-
ical features.

encoder
[sklearn.preprocessing.OrdinalEncoder] An ordinal encoder was used to encode categorical
features.

hbbrain.mixed_data.freq_cat_onln_gfmm.predict_freq_cat_feature_manhanttan(V, W, E, F, C, Xl,
Xu, X_cat, similar-
ity_of_cat_vals,
g=1)

Predict class labels for samples in the form of hyperboxes with continuous features represented by low bounds
Xl and upper bounds Xu and categorical features stored in X_cat. The predicted results will be computed from
existing hyperboxes with continuous features matrices for lower bounds V and upper bounds W and categorical
features matrices for lower bounds E and upper bounds F.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖 in the form of an hyperbox represented by a lower bound
𝑋𝑙𝑖 and an upper bound 𝑋𝑢𝑖 for continous features and a matrix 𝑋𝑐𝑎𝑡𝑖 for categorical features, an additional
criterion based on the minimum Manhattan distance between the central point of continous features in the input
hyperbox 𝑋𝑖 = [𝑋𝑙𝑖, 𝑋𝑢𝑖] and the central points of continous features in winner hyperboxes are used to find the
final winner hyperbox that its class label is used for predicting the class label of the input hyperbox 𝑋𝑖.

82 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Warning: Another important point to pay attention is that the categorical features storing in 𝑋𝑐𝑎𝑡 need to
be encoded by using the function ordinal_encode_categorical_features() before pushing the values
to this method.

Parameters

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points for all continuous features of all hyperboxes of a trained hyperbox-based model, in
which each row is a minimal point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points for all continuous features of all hyperboxes of a trained hyperbox-based model, in
which each row is a maximal point of a hyperbox.

E
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all lower bounds for all
categorical features of all hyperboxes of a trained hyperbox-based model, in which each row
is a lower bound for categorical features of a hyperbox.

F
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all upper bounds for all
categorical features of all hyperboxes of a trained hyperbox-based model, in which each row
is a upper bound for categorical features of a hyperbox.

C
[array-like of shape (n_hyperboxes,)] An array contains all class lables for all hyperboxes of
a trained hyperbox-based model.

Xl
[array-like of shape (n_samples, n_continuous_features)] The data matrix contains lower
bounds for continuous features of input patterns for which we want to predict the targets.

Xu
[array-like of shape (n_samples, n_continuous_features)] The data matrix contains upper
bounds for continuous features of input patterns for which we want to predict the targets.

X_cat
[array-like of shape (n_samples, n_cat_features)] The data matrix contains categorical
bounds for categorical features of input patterns for which we want to predict the targets.

similarity_of_cat_vals
[array-like of shape (n_cat_features,)] An array stores all similarity values among all pairs of
categorical values for each categorical feature index. Each element in this array is an dictio-
nary with keys being a hashed value of two categorical values and values of this dictionary
being a similarity value.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each continuous dimension.

Returns

y_pred
[array-like of shape (n_samples,)] Predicted class labels for all input patterns.

2.3. mixed-data learners 83

hyperbox-brain, Release 0.1.1

2.3.3 mixed_data.onehot_onln_gfmm

General fuzzy min-max neural network trained by the batch incremental learning algorithm for mixed attribute data,
in which categorical features are encoded using one-hot encoding.

class hbbrain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM(theta=0.5, theta_min=1,
min_percent_overlap_cat=0.5,
gamma=1, alpha=0.9, V=None,
W=None, D=None, C=None)

Bases: BaseHyperboxClassifier

Batch incremental learning algorithm with mixed-attribute data for a general fuzzy min-max neural network, in
which categorical features are encoded using the one-hot encoding method and the similarity degrees among
categorical values are computed using one-hot encoding values with logical operators. The final membership
value is the average of membership values for continuous features and membership values for categorical features.

See [1] for more detailed information regarding this batch incremental learning algorithm.

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for continuous features.

theta_min
[float, optional, default=1] Minimum value of the maximum hyperbox size for continuous
features so that the training loop is still performed. If the value of theta_min is larger than
the value of theta, it will be automatically assigned a value equal to theta.

gamma
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continuous
feature.

min_percent_overlap_cat
[float, optional, default=0.5] The minimum number of categorical values in the categorical
features of the input pattern that match the values in the categorical dimensions of the winner
hyperbox to be expansion.

alpha
[float, optional, default=0.9] Multiplier factor to reduce the value of maximum hyperbox size
after each training loop.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all minimal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] A matrix stores all maximal
points for continuous features of all existing hyperboxes, in which each row is a minimal
point of a hyperbox.

D
[array-like of shape (n_hyperboxes, n_cat_features)] A matrix stores all bounds for categor-
ical features of all existing hyperboxes, in which each row is a lower bound of a hyperbox.
Elements in this matrix are binary strings.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

84 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

References

[1]

Examples

>>> from hbbrain.mixed_data.onehot_onln_gfmm import OneHotOnlineGFMM
>>> from hbbrain.datasets import load_japanese_credit
>>> X, y = load_japanese_credit()
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> numerical_features = [1, 2, 7, 10, 13, 14]
>>> categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12]
>>> scaler.fit(X[:, numerical_features])
MinMaxScaler()
>>> X[:, numerical_features] = scaler.transform(X[:, numerical_features])
>>> clf = OneHotOnlineGFMM(theta=0.1, min_percent_overlap_cat=0.6)
>>> clf.fit(X, y, categorical_features)
>>> print("Number of hyperboxes = %d"%clf.get_n_hyperboxes())
Number of hyperboxes = 236
>>> clf.predict(X[[10, 100]])
array([0, 0])

Attributes

categorical_features_
[int array of shape (n_cat_features,)] Indices of categorical features in the training data and
hyperboxes.

continuous_features_
[int array of shape (n_continuous_features,)] Indices of continuous features in the training
data and hyperboxes.

encoder_
[sklearn.preprocessing.OneHotEncoder] An one-hot encoder was used to encode categorical
features.

is_exist_continuous_missing_value
[boolean] Is there any missing values in continuous features in the training data.

elapsed_training_time
[float] Training time in seconds.

n_passes
[int] Number of training loops.

2.3. mixed-data learners 85

hyperbox-brain, Release 0.1.1

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y[, categorical_features]) Build a general fuzzy min-max neural network from
the training set (X, y) using the original incremental
learning algorithm for mixed attribute data, in which
categorical features are encoded using one-hot encod-
ing.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern repre-
sented by upper and lower bounds for continous fea-
tures together with the bound for categorical feature.

initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
is_satisfied_cat_expansion_conds(xd, Dj,
...)

Check whether the expansion condition for categori-
cal features xd of an input pattern can be covered by
categorical features of the hyperbox 𝐵𝑗 with the cat-
egorical features stored in Dj.

predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X in-

cluding both continuous and categorical features.
predict_with_membership(X) Predict class membership values of the input samples

X including both categorical and continuous features.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

fit(X, y, categorical_features=None)
Build a general fuzzy min-max neural network from the training set (X, y) using the original incremen-
tal learning algorithm for mixed attribute data, in which categorical features are encoded using one-hot
encoding.

Parameters

X
[array-like of shape (n_samples, n_features) or (2*n_samples, n_features)] The training
input samples including both continuous and categorical features. If the number of rows in
X is 2*n_samples, the first n_samples rows contain lower bounds of input patterns and the
rest n_samples rows contain upper bounds.

y
[array-like of shape (n_samples,)] The class labels.

categorical_features
[a list of int, optional, default=None] Indices of categorical features in the training set. If

86 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

None, there is no categorical feature.

Returns

self
[object.] Fitted estimator.

get_n_hyperboxes()

Get number of hyperboxes in the trained hyperbox-based model

Returns

int
Number of hyperboxes in the trained hyperbox-based classifier.

get_sample_explanation(x)
Get useful information for explaining the reason behind the predicted result for the input pattern represented
by upper and lower bounds for continous features together with the bound for categorical feature.

Parameters

x
[ndarray of shape (n_feature,)] The input pattern which needs to be explained includes both
continuous features and categorical features.

Returns

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of the hyperbox corresponding to that class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of the hyperbox corresponding to that class.

dict_cat_point_classes: dictionary
A dictionary stores all categorical features of hyperboxes having the maximum membership
value for each class. The key is the class label and the value is the bound of categeorical
features of the hyperbox corresponding to that class.

is_satisfied_cat_expansion_conds(xd, Dj, n_cat_features)
Check whether the expansion condition for categorical features xd of an input pattern can be covered by
categorical features of the hyperbox 𝐵𝑗 with the categorical features stored in Dj.

Parameters

xd
[array-like of shape (n_cat_features,)] Categorical features of an input pattern.

Dj
[array-like of shape (n_cat_features,)] Categorical features bounds of the hyperbox Bj
which can be extended to cover the input pattern.

2.3. mixed-data learners 87

hyperbox-brain, Release 0.1.1

n_cat_features
[int] Number of categorical features in the training set.

Returns

bool
If True, the categorical features in Dj are satisfied with the expansion conditions for the
categorical feature so that it can be expanded to cover the input pattern. Otherwise, the
conditions for the categorical features are not met.

predict(X)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the minimum
Manhattan distance between continous featurers of𝑋𝑖 and the central points of continous features of winner
hyperboxes are used to find the final winner hyperbox that its class label is used for predicting the class
label of the input pattern 𝑋𝑖. If there are only categorical features but many winner hyperboxes belonging
to different classes, a random selection will be used to choose the final class label.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

predict_proba(X)
Predict class probabilities of the input samples X including both continuous and categorical features.

The predicted class probability is the fraction of the membership value of the representative hyperbox of
that class and the sum of all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class membership values of the input samples X including both categorical and continuous features.

The predicted class membership value is the membership value of the representative hyperbox of that class.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

88 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

mem_vals
[ndarray of shape (n_samples, n_classes)] The class membership values of the input sam-
ples. The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains both continous and
categorical features of validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, otherwise the decision for
keeping or removing based on the classification accuracy on the validation dataset.

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

hbbrain.mixed_data.onehot_onln_gfmm.impute_missing_value_cat_feature(Xd)
Impute missing values of categorical features in Xd by a constant value.

Parameters

Xd
[array-like of shape (n_samples, n_cat_features)] Categorical features.

Returns

Xd
[array-like of shape (n_samples, n_cat_features)] Categorial features after doing data impu-
tation.

hbbrain.mixed_data.onehot_onln_gfmm.one_hot_encoding_cat_feature(X, categorical_features,
encodings=None)

Encode categorical features by the one-hot encoding method.

Parameters

X
[array-like of shape (n_samples, n_features)] Input patterns.

categorical_features
[array-like of shape (n_cat_features,)] Indices of categorical features.

encodings
[a list of objects, optional, default=None] Storing a list of one-hot encoders each for a cate-
gorical feature.

Returns

2.3. mixed-data learners 89

hyperbox-brain, Release 0.1.1

X_out
[array-like of shape (n_samples, n_features)] An input data matrix with the encoded categor-
ical features.

encodings_out
[TYPE] An one-hot encoder was used to encode categorical features.

hbbrain.mixed_data.onehot_onln_gfmm.predict_onehot_cat_feature_manhanttan(V, W, D, C, Xl, Xu,
Xd, g=1)

Predict class labels for mixed-class samples in X represented in the form of invervals [Xl, Xu, Xd]. This is a
common function to determine the right class labels for X wrt a trained hyperbox-based classifier represented by
[V, W, D, C]. It uses the winner-takes-all principle to predict class labels for each sample in X by assigning the
class label of the sample to the class label of the hyperbox with the maximum membership value to that sample.
It will use a Manhattan distance for continous features in the case of many hyperboxes with different classes
having the same maximum membership value. If there is no continuous feature the random selection will be
used for the case of many winner hyperboxes.

Parameters

Xl
[array-like of shape (n_samples, n_continuous_features)] Lower bounds of continuous fea-
tures of all input samples. If None, there are no continous features.

Xu
[array-like of shape (n_samples, n_continuous_features)] Lower bounds of continuous fea-
tures of all input samples. If None, there are no continous features.

Xd
[array-like of shape (n_samples, n_cat_features)] Bounds of categorical features of all input
patterns. If None, there are no categorical features.

V
[array-like of shape (n_hyperboxes, n_continuous_features)] Minimum points of all continu-
ous features of the existing hyperboxes in the trained model. If None, there are no continous
features.

W
[array-like of shape (n_hyperboxes, n_continuous_features)] Maximum points of all contin-
uous features of the existing hyperboxes in the trained model. If None, there are no continous
features.

D
[array-like of shape (n_hyperboxes, n_cat_features)] Bounds of all categorical features of the
existing hyperboxes in the trained model. If None, there are no categorical features.

C
[array-like of shape (n_hyperboxes,)] Class labels of all existing hyperboxes corresponding
to the values stored in V, W, and D.

g
[float or ndarray of shape (n_continuous_features,), optional, default=1] A sensitivity pa-
rameter describing the speed of decreasing of the membership function in each continous
dimension.

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

90 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

2.4 batch learners

2.4.1 batch_learner.agglo_gfmm

General fuzzy min-max neural network trained by the agglomerative learning algorithm with full similarity matrix.

class hbbrain.numerical_data.batch_learner.agglo_gfmm.AgglomerativeLearningGFMM(theta=0.5,
gamma=1,
min_simil=0.5,
simil_measure='mid',
asimil_type='max',
is_draw=False)

Bases: BaseGFMMClassifier

Agglomerative learning algorithm with full similarity matrix for a general fuzzy min-max neural network with
numerical data.

See [1] for more detailed information regarding this learning algorithm.

Note: Note that this implementation uses the accelerated mechanism presented in [2] to accelerate the improved
online learning algorithm.

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

min_simil
[float, optional, default=0.5] Minimum similarity threshold so that two hyperboxes are ag-
glomerated.

simil_measure
[{‘short’, ‘long’, ‘mid’}, optional, default=’mid’] Type of similarity measures is used to
compute similarity between two hyperboxes. It can get values of shorted gap, middel gap or
longest gap between two hyperboxes.

asimil_type
[{‘max’, ‘min’}, optional, default=’max’] Type of similarity measures is used in the case of
simil_measure getting a value of mid. It can be the maximum or minimum values of two
dissimilar values of a similarity measure based on middle distance.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

2.4. batch learners 91

hyperbox-brain, Release 0.1.1

References

[1], [2]

Examples

>>> from hbbrain.numerical_data.batch_learner.agglo_gfmm import␣
→˓AgglomerativeLearningGFMM
>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = AgglomerativeLearningGFMM(theta=0.1, min_simil=0.8, simil_measure='short')
>>> clf.fit(X, y)
>>> print("Number of hyperboxes = %d"%clf.get_n_hyperboxes())
Number of hyperboxes = 65
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

N_samples
[array-like of shape (n_hyperboxes,)] A vector stores the number of samples fully included
in each existing hyperbox.

is_exist_missing_value
[boolean] Is there any missing values in continuous features in the training data.

elapsed_training_time
[float] Training time in seconds.

92 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data us-
ing the agglomerative learning algorithm using full
similarity matrix.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(xl, xu[, ...]) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X[, type_boundary_handling]) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(Xl_val, Xu_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the model according to the given training data using the agglomerative learning algorithm using full
similarity matrix.

Parameters

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted hyperbox-based model.

get_sample_explanation(xl, xu, type_boundary_handling=1)
Get useful information for explaining the reason behind the predicted result for the input pattern

Parameters

xl
[ndarray of shape (n_feature,)] Minimum point of the input pattern which needs to be ex-
plained.

xu
[ndarray of shape (n_feature,)] Maximum point of the input pattern which needs to be
explained.

2.4. batch learners 93

hyperbox-brain, Release 0.1.1

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling samples
located on the boundary.

Returns

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class

predict(X, type_boundary_handling=1)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the probability
generated by number of samples included in winner hyperboxes and membership values or the Manhattan
distance between the central point of winner hyperboxes and the input sample is used to find the final winner
hyperbox that its class label is used for predicting the class label of the input pattern 𝑋𝑖.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling many
winner hyperboxes, i.e., PROBABILITY_MEASURE or MANHATTAN_DIS

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

simple_pruning(Xl_val, Xu_val, y_val, acc_threshold=0.5, keep_empty_boxes=False,
type_boundary_handling=1)

Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox

Parameters

Xl_val
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of
validation patterns.

94 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Xu_val
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of
validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling samples
located on the boundary.

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

2.4.2 batch_learner.accel_agglo_gfmm

General fuzzy min-max neural network trained by the accelerated agglomerative learning algorithm.

class hbbrain.numerical_data.batch_learner.accel_agglo_gfmm.AccelAgglomerativeLearningGFMM(theta=0.5,
gamma=1,
min_simil=0.5,
simil_measure='mid',
asimil_type='max',
is_draw=False)

Bases: BaseGFMMClassifier

Accelerated agglomerative learning algorithm for a general fuzzy min-max neural network with numerical data.

See [1] for more detailed information regarding this learning algorithm.

Note: This implementation uses the accelerated mechanism presented in [2] to accelerate the improved online
learning algorithm.

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

min_simil
[float, optional, default=0.5] Minimum similarity threshold so that two hyperboxes are ag-
glomerated.

2.4. batch learners 95

hyperbox-brain, Release 0.1.1

simil_measure
[{‘short’, ‘long’, ‘mid’}, optional, default=’mid’] Type of similarity measures is used to
compute similarity between two hyperboxes. It can get values of shorted gap, middel gap or
longest gap between two hyperboxes.

asimil_type
[{‘max’, ‘min’}, optional, default=’max’] Type of similarity measures is used in the case of
simil_measure getting a value of mid. It can be the maximum or minimum values of two
dissimilar values of a similarity measure based on middle distance.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

References

[1], [2]

Examples

>>> from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM
>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = AccelAgglomerativeLearningGFMM(theta=0.1, min_simil=0.8, simil_measure=
→˓'short')
>>> clf.fit(X, y)
>>> print("Number of hyperboxes = %d"%clf.get_n_hyperboxes())
Number of hyperboxes = 69
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

96 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

N_samples
[array-like of shape (n_hyperboxes,)] A vector stores the number of samples fully included
in each existing hyperbox.

is_exist_missing_value
[boolean] Is there any missing values in continuous features in the training data.

elapsed_training_time
[float] Training time in seconds.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data us-
ing the accelerated agglomerative learning algorithm.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(xl, xu[, ...]) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X[, type_boundary_handling]) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(Xl_val, Xu_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the model according to the given training data using the accelerated agglomerative learning algorithm.

Parameters

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted hyperbox-based model.

get_sample_explanation(xl, xu, type_boundary_handling=1)
Get useful information for explaining the reason behind the predicted result for the input pattern

2.4. batch learners 97

hyperbox-brain, Release 0.1.1

Parameters

xl
[ndarray of shape (n_feature,)] Minimum point of the input pattern which needs to be ex-
plained.

xu
[ndarray of shape (n_feature,)] Maximum point of the input pattern which needs to be
explained.

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling samples
located on the boundary.

Returns

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class

predict(X, type_boundary_handling=1)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the probability
generated by number of samples included in winner hyperboxes and membership values or the Manhattan
distance between the central point of winner hyperboxes and the input sample is used to find the final winner
hyperbox that its class label is used for predicting the class label of the input pattern 𝑋𝑖.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling many
winner hyperboxes, i.e., PROBABILITY_MEASURE or MANHATTAN_DIS

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

98 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

simple_pruning(Xl_val, Xu_val, y_val, acc_threshold=0.5, keep_empty_boxes=False,
type_boundary_handling=1)

Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox

Parameters

Xl_val
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of
validation patterns.

Xu_val
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of
validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling samples
located on the boundary.

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

2.5 ensemble learners

2.5.1 ensemble_learner.base_bagging

Base functions and classes for bagging models using hyperbox-based models.

class hbbrain.numerical_data.ensemble_learner.base_bagging.BaseBagging(base_estimator=None,
n_estimators=10, *,
max_samples=0.5,
bootstrap=False,
class_balanced=False,
n_jobs=None,
random_state=None)

Bases: BaseEnsemble

Base class for Bagging meta-estimator. Warning: This class should not be used directly. Use derived classes
instead.

Attributes

estimators_samples_
The subset of drawn samples for each base estimator.

2.5. ensemble learners 99

hyperbox-brain, Release 0.1.1

Methods

fit(X, y) Build a Bagging ensemble of estimators from the
training set (X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

property estimators_samples_

The subset of drawn samples for each base estimator. Returns a dynamically generated list of indices
identifying the samples used for fitting each member of the ensemble, i.e., the in-bag samples.

Note: The list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y)
Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The real class labels

Returns

self
[object] Fitted estimator.

get_n_hyperboxes()

Get total number of hyperboxes in all base learners.

Returns

n_hyperboxes
[int] Total number of hyperboxes in all base learners.

simple_pruning_base_estimators(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox. This
operation is applied for all base estimators.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

100 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A bagging model with base estimators prunned.

2.5.2 ensemble_learner.base_cross_val_bagging

Base functions and classes for k-fold cross validation bagging models using hyperbox-based models.

class hbbrain.numerical_data.ensemble_learner.base_cross_val_bagging.BaseCrossValBagging(base_estimator=None,
base_estimator_params={},
n_estimators=10,
max_samples=0.5,
boot-
strap=False,
class_balanced=False,
n_iter=10,
scor-
ing='accuracy',
k_fold=5,
n_jobs=None,
ran-
dom_state=None)

Bases: BaseEnsemble

Base class for cross validation Bagging meta-estimator, in which base estimators are built using k-fold cross-
validation and random search for parameter tuning. Warning: This class should not be used directly. Use derived
classes instead.

Attributes

estimators_samples_
The subset of drawn samples for each base estimator.

Methods

fit(X, y) Build a Bagging ensemble of estimators from the
training set (X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

property estimators_samples_

The subset of drawn samples for each base estimator. Returns a dynamically generated list of indices
identifying the samples used for fitting each member of the ensemble, i.e., the in-bag samples.

2.5. ensemble learners 101

hyperbox-brain, Release 0.1.1

Note: The list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y)
Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The real class labels

Returns

self
[object] Fitted estimator.

get_n_hyperboxes()

Get total number of hyperboxes in all base learners.

Returns

n_hyperboxes
[int] Total number of hyperboxes in all base learners.

simple_pruning_base_estimators(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox. This
operation is applied for all base estimators.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A bagging model with base estimators prunned.

102 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

2.5.3 ensemble_learner.decision_comb_bagging

A bagging of many base hyperbox-based models trained on the full set of features and a subset of samples. The predicted
class is computed based on the voting mechanism of decisions of base models.

class hbbrain.numerical_data.ensemble_learner.decision_comb_bagging.DecisionCombinationBagging(base_estimator=None,
n_estimators=10,
max_samples=0.5,
boot-
strap=False,
class_balanced=False,
n_jobs=1,
ran-
dom_state=None)

Bases: ClassifierMixin, BaseBagging

A Bagging classifier of base hyperbox-based models trained on a full set of features and a subset of samples.

A decision combination Bagging classifier of hyperbox-based models is an ensemble meta-estimator that fits base
hyperbox-based classifiers each on random subsets of the original samples and then aggregate their individual
predictions by voting to form a final prediction. Such a meta-estimator can typically be used as a way to reduce
the variance of a single estimator, by introducing randomization into its construction procedure and then making
an ensemble out of it. This algorithm encompasses several works from the literature. When random subsets of
the dataset are drawn as random subsets of the samples, then this algorithm is known as Pasting [1]. If samples
are drawn with replacement, then the method is known as Bagging [2]. See [3] for more detailed information
regarding the combination of base hyperbox-based models.

Parameters

base_estimator
[object, default=None] The base estimator to fit on random subsets of the dataset. If None,
then the base estimator is a OnlineGFMM .

n_estimators
[int, default=10] The number of base estimators in the ensemble.

max_samples
[int or float, default=0.5] The number of samples to draw from X to train each base esti-
mator (with no replacement by default, see bootstrap for more details). - If int, then draw
max_samples samples. - If float, then draw max_samples * X.shape[0] samples.

bootstrap
[bool, default=False] Whether samples are drawn with replacement. If False, sampling with-
out replacement is performed.

class_balanced
[bool, default=False] Whether samples are drawn without replacement to build a final subset
with the equal number of samples among classes.

n_jobs
[int, default=1] The number of jobs to run in parallel for both fit() and predict(). None
means 1 unless in a joblib.parallel_backend context. -1 means using all processors.

random_state
[int, RandomState instance or None, default=None] Controls the random resampling of the
original dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for
reproducible output across multiple function calls.

2.5. ensemble learners 103

hyperbox-brain, Release 0.1.1

References

[1], [2], [3]

Examples

>>> from hbbrain.numerical_data.incremental_learner.iol_gfmm import␣
→˓ImprovedOnlineGFMM
>>> from hbbrain.numerical_data.ensemble_learner.decision_comb_bagging import␣
→˓DecisionCombinationBagging
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = DecisionCombinationBagging(base_estimator=ImprovedOnlineGFMM(0.1),
... n_estimators=10, random_state=0).fit(X, y)
>>> clf.predict([[1, 0.6, 0.5, 0.2]])
array([1])

Attributes

base_estimator_
[estimator] The base estimator from which the ensemble is grown.

estimators_
[list of estimators] The collection of fitted base estimators.

estimators_samples_
[list of arrays] The subset of drawn samples for each base estimator.

classes_
[ndarray of shape (n_classes,)] The classes labels.

n_classes_
[int or list] The number of classes.

104 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Methods

fit(X, y) Build a Bagging ensemble of estimators from the
training set (X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_proba(X) Predict class probabilities for X.
predict_with_membership(X) Predict class memberships for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

fit(X, y)
Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The real class labels

Returns

self
[object] Fitted estimator.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

Returns

y
[ndarray of shape (n_samples,)] The predicted classes.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the hyperbox-based learners in the ensemble model. The class probability of a single hyperbox-based
learner is the fraction of the membership value of the representative hyperbox of that class and the sum of
all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

2.5. ensemble learners 105

hyperbox-brain, Release 0.1.1

Returns

all_probas
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class memberships for X.

The predicted class memberships of an input sample are computed as the mean predicted class memberships
of the hyperbox-based learners in the ensemble model. The class membership of a single hyperbox-based
learner is the membership from the input X to the representative hyperbox of that class to join the prediction
procedure.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class memberships of the input samples.
The order of the classes corresponds to that in ascending integers of class labels.

2.5.4 ensemble_learner.decision_comb_cross_val_bagging

A bagging of many base hyperbox-based models trained on the full set of features and a subset of samples. Each base
learner is trained by random search-based hyper-parameter tuning and k-fold cross-validation The predicted class is
computed based on the voting mechanism of decisions of base models.

class hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging.DecisionCombinationCrossValBagging(base_estimator=None,
base_estimator_params={},
n_estimators=10,
max_samples=0.5,
boot-
strap=False,
class_balanced=False,
n_iter=10,
scor-
ing='accuracy',
k_fold=5,
n_jobs=1,
ran-
dom_state=None)

Bases: ClassifierMixin, BaseCrossValBagging

A Bagging classifier of base hyperbox-based models trained on a full set of features and a subset of samples, in
which each base learner is trained by random search-based hyper-parameter tuning and k-fold cross-validation.

A decision combination cross-validation Bagging classifier of hyperbox-based models is an ensemble meta-
estimator that fits base hyperbox-based classifiers each on random subsets of the original samples using random
search-based hyper-parameter tuning and k-fold cross-validation, and then aggregate their individual predictions
by voting to form a final prediction. Such a meta-estimator can typically be used as a way to reduce the variance
of a single estimator, by introducing randomization into its construction procedure and then making an ensemble
out of it. This algorithm encompasses several works from the literature. When random subsets of the dataset
are drawn as random subsets of the samples, then this algorithm is known as Pasting [1]. If samples are drawn

106 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

with replacement, then the method is known as Bagging [2]. See [3] for more detailed information regarding the
combination of base hyperbox-based models.

Parameters

base_estimator
[object, default=None] The base estimator to fit on random subsets of the dataset. If None,
then the base estimator is a OnlineGFMM .

base_estimator_params
[dict or list of dicts, default={}] Dictionary with parameters names (str) as keys and distri-
butions or lists of parameters to try. If a list is given, it is sampled uniformly. If a list of dicts
is given, first a dict is sampled uniformly, and then a parameter is sampled using that dict as
above.

n_estimators
[int, default=10] The number of base estimators in the ensemble.

max_samples
[int or float, default=0.5] The number of samples to draw from X to train each base esti-
mator (with no replacement by default, see bootstrap for more details). - If int, then draw
max_samples samples. - If float, then draw max_samples * X.shape[0] samples.

bootstrap
[bool, default=False] Whether samples are drawn with replacement. If False, sampling with-
out replacement is performed.

class_balanced
[bool, default=False] Whether samples are drawn without replacement to build a final subset
with the equal number of samples among classes.

n_iter
[int, default=10] Number of parameter settings that are sampled. n_iter trades off runtime vs
quality of the solution.

scoring
[str or callable default=’accuracy’] Strategy to evaluate the performance of the cross-
validated model on the test set. If scoring represents a single score, one can use: - a single
string (see The scoring parameter: defining model evaluation rules in sklearn). - a callable
(see Defining your scoring strategy from metric functions) that returns a single value.

n_jobs
[int, default=1] The number of jobs to run in parallel for both fit() and predict(). None
means 1 unless in a joblib.parallel_backend context. -1 means using all processors.

k_fold
[int, default=5] Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 5-fold cross validation, - integer, to specify the number of folds
in a (Stratified)KFold, For integer/None inputs, if the estimator is a classifier and y is either
binary or multiclass, Stratified K-Fold is used.

random_state
[int, RandomState instance or None, default=None] Controls the random resampling of the
original dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for
reproducible output across multiple function calls.

2.5. ensemble learners 107

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring

hyperbox-brain, Release 0.1.1

References

[1], [2], [3]

Examples

>>> from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM
>>> from hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging␣
→˓import DecisionCombinationCrossValBagging
>>> from sklearn.datasets import make_classification
>>> import numpy as np
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = DecisionCombinationCrossValBagging(base_estimator=OnlineGFMM(0.1),
... base_estimator_params = {'theta': np.arange(0.05, 1.01,␣
→˓0.05), 'theta_min':[1], 'gamma':[0.5, 1, 2, 4, 8, 16]},
... n_estimators=10, random_state=0).fit(X, y)
>>> clf.predict([[1, 0.6, 0.5, 0.2]])
array([1])

Attributes

base_estimator_
[estimator] The base estimator from which the ensemble is grown.

estimators_
[list of estimators] The collection of fitted base estimators.

estimators_samples_
[list of arrays] The subset of drawn samples for each base estimator.

classes_
[ndarray of shape (n_classes,)] The classes labels.

n_classes_
[int or list] The number of classes.

108 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Methods

fit(X, y) Build a Bagging ensemble of estimators from the
training set (X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_proba(X) Predict class probabilities for X.
predict_with_membership(X) Predict class memberships for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

fit(X, y)
Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The real class labels

Returns

self
[object] Fitted estimator.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

Returns

y
[ndarray of shape (n_samples,)] The predicted classes.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the hyperbox-based learners in the ensemble model. The class probability of a single hyperbox-based
learner is the fraction of the membership value of the representative hyperbox of that class and the sum of
all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

2.5. ensemble learners 109

hyperbox-brain, Release 0.1.1

Returns

all_probas
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class memberships for X.

The predicted class memberships of an input sample are computed as the mean predicted class memberships
of the hyperbox-based learners in the ensemble model. The class membership of a single hyperbox-based
learner is the membership from the input X to the representative hyperbox of that class to join the prediction
procedure.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class memberships of the input samples.
The order of the classes corresponds to that in ascending integers of class labels.

2.5.5 ensemble_learner.model_comb_bagging

A bagging of many base hyperbox-based models trained on the full set of features and a subset of samples. After for-
mulation of base learners models, their hyperboxes are combined into a single model. The predicted class is computed
based on the final single model.

class hbbrain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging(base_estimator=None,
model_level_estimator=None,
n_estimators=10,
max_samples=0.5,
boot-
strap=False,
class_balanced=False,
n_jobs=1,
ran-
dom_state=None)

Bases: ClassifierMixin, BaseBagging

A Bagging classifier of base hyperbox-based models trained on a full set of features and a subset of samples.
Then, the hyperboxes from all base learners are combined to a single model.

A model-level combination Bagging classifier of hyperbox-based models is an ensemble meta-estimator that
fits base hyperbox-based classifiers each on random subsets of the original samples and then aggregate their
hyperboxes into a single model and use this model for prediction. Such a meta-estimator can typically be used as
a way to reduce the variance of a single estimator, by introducing randomization into its construction procedure
and then making an ensemble out of it. This algorithm encompasses several works from the literature. When
random subsets of the dataset are drawn as random subsets of the samples, then this algorithm is known as Pasting
[1]. If samples are drawn with replacement, then the method is known as Bagging [2]. See [3] for more detailed
information regarding the combination of hyperboxes from all base hyperbox-based models.

Parameters

110 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

base_estimator
[object, default=None] The base estimator to fit on random subsets of the dataset. If None,
then the base estimator is a OnlineGFMM .

model_level_estimator
[object, default=None] The estimator is used to aggregate all resulting hyperboxes
from all base learners into a single model. If None, then the base estimator is a
AccelAgglomerativeLearningGFMM .

n_estimators
[int, default=10] The number of base estimators in the ensemble.

max_samples
[int or float, default=0.5] The number of samples to draw from X to train each base esti-
mator (with no replacement by default, see bootstrap for more details). - If int, then draw
max_samples samples. - If float, then draw max_samples * X.shape[0] samples.

bootstrap
[bool, default=False] Whether samples are drawn with replacement. If False, sampling with-
out replacement is performed.

class_balanced
[bool, default=False] Whether samples are drawn without replacement to build a final subset
with the equal number of samples among classes.

n_jobs
[int, default=1] The number of jobs to run in parallel for both fit() and predict(). None
means 1 unless in a joblib.parallel_backend context. -1 means using all processors.

random_state
[int, RandomState instance or None, default=None] Controls the random resampling of the
original dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for
reproducible output across multiple function calls.

References

[1], [2], [3]

Examples

>>> from hbbrain.numerical_data.incremental_learner.iol_gfmm import␣
→˓ImprovedOnlineGFMM
>>> from hbbrain.numerical_data.ensemble_learner.model_comb_bagging import␣
→˓ModelCombinationBagging
>>> from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()

(continues on next page)

2.5. ensemble learners 111

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> X = scaler.transform(X)
>>> clf = ModelCombinationBagging(base_estimator=ImprovedOnlineGFMM(0.1),
... model_level_
→˓estimator=AccelAgglomerativeLearningGFMM(0.1),
... n_estimators=10, random_state=0).fit(X, y)
>>> clf.predict([[1, 0.6, 0.5, 0.2]])
array([1])

Attributes

base_estimator_
[estimator] The base estimator from which the ensemble is grown.

model_level_estimator_
[estimator] The final estimator is the combination of hyperboxes from all base learners.

estimators_
[list of estimators] The collection of fitted base estimators.

estimators_samples_
[list of arrays] The subset of drawn samples for each base estimator.

classes_
[ndarray of shape (n_classes,)] The classes labels.

n_classes_
[int or list] The number of classes.

Methods

fit(X, y[, is_pruning_base_learners, X_val, ...]) Build a Bagging ensemble of estimators from the
training set (X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_n_hyperboxes_comb_model() Get number of hyperboxes in the final combined

model from all hyperboxes of base learners
get_params([deep]) Get parameters for this estimator.
predict(X[, type_boundary_handling]) Predict class for X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_proba_all_base_learners(X) Predict mean class probabilities for X from all base

learners.
predict_voting(X) Predict class for X.
predict_with_membership(X) Predict class membership values of the input samples

X.
predict_with_membership_all_base_learners(X)Predict mean class memberships for X from all base

learners.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a

pre-defined accuracy threshold for each hyperbox.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

112 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

fit(X, y, is_pruning_base_learners=False, X_val=None, y_val=None, acc_threshold=0.5,
keep_empty_boxes=False)
Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The real class labels

is_pruning_base_learners
[boolean, optional, default=False] Whether the pruning procedure can be applied for base
learners or not

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
[object] Fitted estimator.

get_n_hyperboxes_comb_model()

Get number of hyperboxes in the final combined model from all hyperboxes of base learners

Returns

int
Total number of hyperboxes in the final combined models from all resulting hyperboxes of
all base learners.

predict(X, type_boundary_handling=-1)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

type_boundary_handling
[int, optional, default=-1] The way of handling many winner hyperboxes. This parameter
is only used in the case of model_level_estimator being improved online learing algorithm
or aggolomerative learning algorithms.

Returns

2.5. ensemble learners 113

hyperbox-brain, Release 0.1.1

y_pred
[ndarray of shape (n_samples,)] The predicted classes.

predict_proba(X)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of the membership value of the representative hyperbox of that
class and the sum of all membership values of all representative hyperboxes of all classes in the prediction
procedure using the final combined model.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_proba_all_base_learners(X)
Predict mean class probabilities for X from all base learners.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of all hyperbox-based learners in the ensemble model. The class probability of a single hyperbox-based
learner is the fraction of the membership value of the representative hyperbox of that class and the sum of
all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

all_probas
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_voting(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting from all base learners.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

Returns

y
[ndarray of shape (n_samples,)] The predicted classes.

predict_with_membership(X)
Predict class membership values of the input samples X.

The predicted class membership value is the membership value of the representative hyperbox of that class
in the prediction procedure using the final combined model.

Parameters

114 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class membership values of the input sam-
ples. The order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership_all_base_learners(X)
Predict mean class memberships for X from all base learners.

The predicted class memberships of an input sample are computed as the mean predicted class memberships
of the hyperbox-based learners in the ensemble model. The class membership of a single hyperbox-based
learner is the membership from the input X to the representative hyperbox of that class to join the prediction
procedure.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class memberships of the input samples.
The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox. This
operation is applied for the final combined model.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A final hyperbox-based model is prunned of low-quality hyperboxes.

2.5. ensemble learners 115

hyperbox-brain, Release 0.1.1

2.5.6 ensemble_learner.model_comb_cross_val_bagging

A bagging of many base hyperbox-based models trained on the full set of features and a subset of samples. Each base
learner is trained by k-fold cross validation and random search based hyper-parameter tuning. After formulation of
base learners models, their hyperboxes are combined into a single model. The predicted class is computed based on
the final single model.

class hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging(base_estimator=None,
base_estimator_params={},
model_level_estimator=None,
n_estimators=10,
max_samples=0.5,
boot-
strap=False,
class_balanced=False,
n_iter=10,
scor-
ing='accuracy',
k_fold=5,
n_jobs=1,
ran-
dom_state=None)

Bases: ClassifierMixin, BaseCrossValBagging

A Bagging classifier of base hyperbox-based models trained on a full set of features and a subset of samples.
Each base learner is trained by k-fold cross validation and random search based hyper-parameter tuning. Then,
the hyperboxes from all base learners are combined to a single model.

A model-level combination cross validation Bagging classifier of hyperbox-based models is an ensemble meta-
estimator that fits base hyperbox-based classifiers each on random subsets of the original samples using k-fold
cross validation and random search of hyper-paramters, and then aggregate their hyperboxes into a single model
and use this model for prediction. Such a meta-estimator can typically be used as a way to reduce the variance of
a single estimator, by introducing randomization into its construction procedure and then making an ensemble
out of it. This algorithm encompasses several works from the literature. When random subsets of the dataset
are drawn as random subsets of the samples, then this algorithm is known as Pasting [1]. If samples are drawn
with replacement, then the method is known as Bagging [2]. See [3] for more detailed information regarding the
combination of hyperboxes from all base hyperbox-based models.

Parameters

base_estimator
[object, default=None] The base estimator to fit on random subsets of the dataset. If None,
then the base estimator is a OnlineGFMM .

base_estimator_params
[dict or list of dicts, default={}] Dictionary with parameters names (str) as keys and distri-
butions or lists of parameters to try. If a list is given, it is sampled uniformly. If a list of dicts
is given, first a dict is sampled uniformly, and then a parameter is sampled using that dict as
above.

model_level_estimator
[object, default=None] The estimator is used to aggregate all resulting hyperboxes
from all base learners into a single model. If None, then the base estimator is a
AccelAgglomerativeLearningGFMM .

n_estimators
[int, default=10] The number of base estimators in the ensemble.

116 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

max_samples
[int or float, default=0.5] The number of samples to draw from X to train each base esti-
mator (with no replacement by default, see bootstrap for more details). - If int, then draw
max_samples samples. - If float, then draw max_samples * X.shape[0] samples.

bootstrap
[bool, default=False] Whether samples are drawn with replacement. If False, sampling with-
out replacement is performed.

class_balanced
[bool, default=False] Whether samples are drawn without replacement to build a final subset
with the equal number of samples among classes.

n_iter
[int, default=10] Number of parameter settings that are sampled. n_iter trades off runtime vs
quality of the solution.

scoring
[str or callable default=’accuracy’] Strategy to evaluate the performance of the cross-
validated model on the test set. If scoring represents a single score, one can use: - a single
string (see The scoring parameter: defining model evaluation rules in sklearn). - a callable
(see Defining your scoring strategy from metric functions) that returns a single value.

k_fold
[int, default=5] Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 5-fold cross validation, - integer, to specify the number of folds
in a (Stratified)KFold, For integer/None inputs, if the estimator is a classifier and y is either
binary or multiclass, Stratified K-Fold is used.

n_jobs
[int, default=1] The number of jobs to run in parallel for both fit() and predict(). None
means 1 unless in a joblib.parallel_backend context. -1 means using all processors.

random_state
[int, RandomState instance or None, default=None] Controls the random resampling of the
original dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for
reproducible output across multiple function calls.

References

[1], [2], [3]

Examples

>>> from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM
>>> from hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging␣
→˓import ModelCombinationCrossValBagging
>>> from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> from sklearn.preprocessing import MinMaxScaler

(continues on next page)

2.5. ensemble learners 117

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(0.1),
... base_estimator_params = {'theta': np.arange(0.05, 1.
→˓01, 0.05), 'theta_min':[1], 'gamma':[0.5, 1, 2, 4, 8, 16]},
... model_level_
→˓estimator=AccelAgglomerativeLearningGFMM(0.1),
... n_estimators=10, random_state=0).fit(X, y)
>>> clf.predict([[1, 0.6, 0.5, 0.2]])
array([1])

Attributes

base_estimator_
[estimator] The base estimator from which the ensemble is grown.

model_level_estimator_
[estimator] The final estimator is the combination of hyperboxes from all base learners.

estimators_
[list of estimators] The collection of fitted base estimators.

estimators_samples_
[list of arrays] The subset of drawn samples for each base estimator.

classes_
[ndarray of shape (n_classes,)] The classes labels.

n_classes_
[int or list] The number of classes.

118 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Methods

fit(X, y[, is_pruning_base_learners, X_val, ...]) Build a Bagging ensemble of estimators from the
training set (X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_n_hyperboxes_comb_model() Get number of hyperboxes in the final combined

model from all hyperboxes of base learners
get_params([deep]) Get parameters for this estimator.
predict(X[, type_boundary_handling]) Predict class for X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_proba_all_base_learners(X) Predict mean class probabilities for X from all base

learners.
predict_voting(X) Predict class for X.
predict_with_membership(X) Predict class membership values of the input samples

X.
predict_with_membership_all_base_learners(X)Predict mean class memberships for X from all base

learners.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a

pre-defined accuracy threshold for each hyperbox.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

fit(X, y, is_pruning_base_learners=False, X_val=None, y_val=None, acc_threshold=0.5,
keep_empty_boxes=False)
Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The real class labels

is_pruning_base_learners
[boolean, optional, default=False] Whether the pruning procedure can be applied for base
learners or not

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

2.5. ensemble learners 119

hyperbox-brain, Release 0.1.1

Returns

self
[object] Fitted estimator.

get_n_hyperboxes_comb_model()

Get number of hyperboxes in the final combined model from all hyperboxes of base learners

Returns

int
Total number of hyperboxes in the final combined model from all resulting hyperboxes of
all base learners.

predict(X, type_boundary_handling=-1)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

type_boundary_handling
[int, optional, default=-1] The way of handling many winner hyperboxes. This parameter
is only used in the case of model_level_estimator being improved online learing algorithm
or aggolomerative learning algorithms.

Returns

y_pred
[ndarray of shape (n_samples,)] The predicted classes.

predict_proba(X)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of the membership value of the representative hyperbox of that
class and the sum of all membership values of all representative hyperboxes of all classes in the prediction
procedure using the final combined model.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_proba_all_base_learners(X)
Predict mean class probabilities for X from all base learners.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of all hyperbox-based learners in the ensemble model. The class probability of a single hyperbox-based
learner is the fraction of the membership value of the representative hyperbox of that class and the sum of
all membership values of all representative hyperboxes of all classes.

Parameters

120 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

all_probas
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_voting(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting from all base learners.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

Returns

y
[ndarray of shape (n_samples,)] The predicted classes.

predict_with_membership(X)
Predict class membership values of the input samples X.

The predicted class membership value is the membership value of the representative hyperbox of that class
in the prediction procedure using the final combined model.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class membership values of the input sam-
ples. The order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership_all_base_learners(X)
Predict mean class memberships for X from all base learners.

The predicted class memberships of an input sample are computed as the mean predicted class memberships
of the hyperbox-based learners in the ensemble model. The class membership of a single hyperbox-based
learner is the membership from the input X to the representative hyperbox of that class to join the prediction
procedure.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class memberships of the input samples.
The order of the classes corresponds to that in ascending integers of class labels.

2.5. ensemble learners 121

hyperbox-brain, Release 0.1.1

simple_pruning(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox. This
operation is applied for the final combined model.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A final hyperbox-based model is prunned of low-quality hyperboxes.

2.5.7 ensemble_learner.random_hyperboxes

Functions and classes for the random hyperboxes model.

class hbbrain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier(base_estimator=None,
n_estimators=10,
max_samples=0.5,
max_features='sqrt',
class_balanced=False,
fea-
ture_balanced=False,
n_jobs=1,
ran-
dom_state=None)

Bases: ClassifierMixin, BaseEnsemble

A Random Hyperboxes classifier of base hyperbox-based models trained on a subset of features and a subset of
samples.

A Random Hyperboxes classifier of hyperbox-based models is an ensemble meta-estimator that fits base
hyperbox-based classifiers each on random subsets of both original samples and features, then aggregate their
individual predictions by voting to form a final prediction. Such a meta-estimator can typically be used as a way
to reduce the variance of a single estimator, by introducing randomization into its construction procedures and
then making an ensemble out of it. Subsets of features and samples of the random hyperboxes are builts by ran-
dom subsampling without replacement. See [1] for more detailed information regarding the random hyperboxes
classifier.

Parameters

base_estimator
[object, default=None] The base estimator to fit on random subsets of the dataset. If None,
then the base estimator is a OnlineGFMM .

122 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

n_estimators
[int, default=10] The number of base estimators in the ensemble.

max_samples
[int or float, default=0.5] The number of samples to draw from X to train each base estimator
(with no replacement by default, see bootstrap for more details).

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples.

max_features
[{“sqrt”, “log2”}, int or float, default=”sqrt”] The maximum number of features to consider
when building training data for base learners:

• If int, then consider max_features features.

• If float, then max_features is a fraction and round(max_features * n_features) features are
considered.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

class_balanced
[bool, default=False] Whether samples are drawn without replacement to build a final subset
with the equal number of samples among classes.

feature_balanced: bool, default = False
Whether number of features of training sets for all base learners are equal to each other or
not.

n_jobs
[int, default=1] The number of jobs to run in parallel for both fit() and predict(). None
means 1 unless in a joblib.parallel_backend context. -1 means using all processors.

random_state
[int, RandomState instance or None, default=None] Controls the random resampling of the
original dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for
reproducible output across multiple function calls.

References

[1]

Examples

>>> from hbbrain.numerical_data.incremental_learner.iol_gfmm import␣
→˓ImprovedOnlineGFMM
>>> from hbbrain.numerical_data.ensemble_learner.random_hyperboxes import␣
→˓RandomHyperboxesClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> from sklearn.preprocessing import MinMaxScaler

(continues on next page)

2.5. ensemble learners 123

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = RandomHyperboxesClassifier(base_estimator=ImprovedOnlineGFMM(0.1),
... n_estimators=10, random_state=0).fit(X, y)
>>> clf.predict([[1, 0.6, 0.5, 0.2]])
array([1])

Attributes

base_estimator_
[estimator] The base estimator from which the ensemble is grown.

n_features_
[int] Number of features seen during fit.

estimators_
[list of estimators] The collection of fitted base estimators.

estimators_samples_
[list of arrays] The subset of drawn samples for each base estimator.

estimators_features_
[list of arrays] The subset of indices of the drawn features for each base estimator. Each
subset is defined by an array of the indices selected.

classes_
[ndarray of shape (n_classes,)] The classes labels.

n_classes_
[int or list] The number of classes.

Methods

fit(X, y) Build a random hyperbox model from the training set
(X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_proba(X) Predict class probabilities for X.
predict_with_membership(X) Predict class memberships for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

property estimators_samples_

The subset of drawn samples for each base estimator. Returns a dynamically generated list of indices
identifying the samples used for fitting each member of the ensemble, i.e., the in-bag samples.

124 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Note: The list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y)
Build a random hyperbox model from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The class labels.

Returns

self
[object] Fitted estimator.

get_n_hyperboxes()

Get total number of hyperboxes in all base learners.

Returns

n_hyperboxes
[int] Total number of hyperboxes in all base learners.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

Returns

y
[ndarray of shape (n_samples,)] The predicted classes.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the hyperbox-based learners in the ensemble model. The class probability of a single hyperbox-based
learner is the fraction of the membership value of the representative hyperbox of that class and the sum of
all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

all_probas
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

2.5. ensemble learners 125

hyperbox-brain, Release 0.1.1

predict_with_membership(X)
Predict class memberships for X.

The predicted class memberships of an input sample are computed as the mean predicted class memberships
of the hyperbox-based learners in the ensemble model. The class membership of a single hyperbox-based
learner is the membership from the input X to the representative hyperbox of that class to join the prediction
procedure.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class memberships of the input samples.
The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning_base_estimators(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox. This
operation is applied for all base estimators.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A random hyperboxes model with base estimators prunned.

2.5.8 ensemble_learner.cross_val_random_hyperboxes

Functions and classes for the cross-validation random hyperboxes model.

126 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

class hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier(base_estimator=None,
base_estimator_params={},
n_estimators=10,
max_samples=0.5,
max_features='sqrt',
class_balanced=False,
fea-
ture_balanced=False,
n_iter=10,
scor-
ing='accuracy',
k_fold=5,
n_jobs=1,
ran-
dom_state=None)

Bases: ClassifierMixin, BaseEnsemble

A Corss-validation Random Hyperboxes classifier of base hyperbox-based models trained on a subset of features
and a subset of samples together with random search-based hyper-parameter tuning and k-fold cross-validation.

A Random Hyperboxes classifier of hyperbox-based models is an ensemble meta-estimator that fits base
hyperbox-based classifiers each on random subsets of both original samples and features using k-fold cross-
validation and hyper-parameter tuning based on random search. Then, base learners are aggregated with their
individual predictions by voting to form a final prediction. Such a meta-estimator can typically be used as a way
to reduce the variance of a single estimator, by introducing randomization into its construction procedures and
then making an ensemble out of it. Subsets of features and samples of the random hyperboxes are builts by ran-
dom subsampling without replacement. See [1] for more detailed information regarding the random hyperboxes
classifier.

Parameters

base_estimator
[object, default=None] The base estimator to fit on random subsets of the dataset. If None,
then the base estimator is a OnlineGFMM .

base_estimator_params
[dict or list of dicts, default={}] Dictionary with parameters names (str) as keys and distri-
butions or lists of parameters to try. If a list is given, it is sampled uniformly. If a list of dicts
is given, first a dict is sampled uniformly, and then a parameter is sampled using that dict as
above.

n_estimators
[int, default=10] The number of base estimators in the ensemble.

max_samples
[int or float, default=0.5] The number of samples to draw from X to train each base estimator
(with no replacement by default, see bootstrap for more details).

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples.

max_features
[{“sqrt”, “log2”}, int or float, default=”sqrt”] The maximum number of features to consider
when building training data for base learners:

• If int, then consider max_features features.

• If float, then max_features is a fraction and round(max_features * n_features) features are
considered.

2.5. ensemble learners 127

hyperbox-brain, Release 0.1.1

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

class_balanced
[bool, default=False] Whether samples are drawn without replacement to build a final subset
with the equal number of samples among classes.

feature_balanced: bool, default = False
Whether number of features of training sets for all base learners are equal to each other or
not.

n_iter
[int, default=10] Number of parameter settings that are sampled. n_iter trades off runtime vs
quality of the solution.

scoring
[str or callable default=’accuracy’] Strategy to evaluate the performance of the cross-
validated model on the test set. If scoring represents a single score, one can use: - a single
string (see The scoring parameter: defining model evaluation rules in sklearn). - a callable
(see Defining your scoring strategy from metric functions) that returns a single value.

k_fold
[int, default=5] Determines the cross-validation splitting strategy. Possible inputs for cv are:
- None, to use the default 5-fold cross validation, - integer, to specify the number of folds
in a (Stratified)KFold, For integer/None inputs, if the estimator is a classifier and y is either
binary or multiclass, Stratified K-Fold is used.

n_jobs
[int, default=1] The number of jobs to run in parallel for both fit() and predict(). None
means 1 unless in a joblib.parallel_backend context. -1 means using all processors.

random_state
[int, RandomState instance or None, default=None] Controls the random resampling of the
original dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for
reproducible output across multiple function calls.

References

[1]

Examples

>>> from hbbrain.numerical_data.incremental_learner.iol_gfmm import␣
→˓ImprovedOnlineGFMM
>>> from hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes import␣
→˓CrossValRandomHyperboxesClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)

(continues on next page)

128 Chapter 2. API Reference

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring

hyperbox-brain, Release 0.1.1

(continued from previous page)

MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = CrossValRandomHyperboxesClassifier(base_estimator=ImprovedOnlineGFMM(0.1),
... base_estimator_params={'theta': np.arange(0.05, 1.01, 0.
→˓05), 'gamma':[0.5, 1, 2, 4, 8, 16]},
... n_estimators=10, random_state=0).fit(X, y)
>>> clf.predict([[1, 0.6, 0.5, 0.2]])
array([1])

Attributes

base_estimator_
[estimator] The base estimator from which the ensemble is grown.

n_features_
[int] Number of features seen during fit.

estimators_
[list of estimators] The collection of fitted base estimators.

estimators_samples_
[list of arrays] The subset of drawn samples for each base estimator.

classes_
[ndarray of shape (n_classes,)] The classes labels.

n_classes_
[int or list] The number of classes.

Methods

fit(X, y) Build a random hyperbox model from the training set
(X, y).

get_n_hyperboxes() Get total number of hyperboxes in all base learners.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_proba(X) Predict class probabilities for X.
predict_with_membership(X) Predict class memberships for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
simple_pruning_base_estimators(X_val,
y_val)

Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox.

property estimators_samples_

The subset of drawn samples for each base estimator. Returns a dynamically generated list of indices
identifying the samples used for fitting each member of the ensemble, i.e., the in-bag samples.

Note: The list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

2.5. ensemble learners 129

hyperbox-brain, Release 0.1.1

fit(X, y)
Build a random hyperbox model from the training set (X, y).

Parameters

X
[array-like of shape (n_samples, n_features)] The training input samples.

y
[array-like of shape (n_samples,)] The class labels.

Returns

self
[object] Fitted estimator.

get_n_hyperboxes()

Get total number of hyperboxes in all base learners.

Returns

int
Total number of hyperboxes in all base learners.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability
using voting.

Parameters

X
[array-like of shape (n_samples, n_features)] The testing input samples.

Returns

y
[ndarray of shape (n_samples,)] The predicted classes.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the hyperbox-based learners in the ensemble model. The class probability of a single hyperbox-based
learner is the fraction of the membership value of the representative hyperbox of that class and the sum of
all membership values of all representative hyperboxes of all classes.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

all_probas
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X)
Predict class memberships for X.

The predicted class memberships of an input sample are computed as the mean predicted class memberships
of the hyperbox-based learners in the ensemble model. The class membership of a single hyperbox-based

130 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

learner is the membership from the input X to the representative hyperbox of that class to join the prediction
procedure.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples for prediction.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] The class memberships of the input samples.
The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning_base_estimators(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox. This
operation is applied for all base estimators.

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A random hyperboxes model with base estimators prunned.

2.6 incremental learners

2.6.1 incremental_learner.onln_gfmm

General fuzzy min-max neural network trained by the original incremental learning algorithm.

class hbbrain.numerical_data.incremental_learner.onln_gfmm.OnlineGFMM(theta=0.5, theta_min=1,
gamma=1, alpha=0.9,
is_draw=False, V=None,
W=None, C=None)

Bases: BaseGFMMClassifier

General fuzzy min-max neural network model using the original incremental learning algorithm.

This class implements the original online learning algorithm to train the general fuzzy min-max neural network.
The details of this algorithm can be found in [1].

2.6. incremental learners 131

hyperbox-brain, Release 0.1.1

Note: This implementation uses the accelerated mechanism presented in [2] to accelerate the improved online
learning algorithm. Compared to the original online learning algorithm proposed in [1], this implementation
uses the similarity measure between two hyperboxes by shortest gap distance presented in [3] for overlap test. In
addition, we extend the number of hyperbox contraction cases from four in the original algorithm to eight cases
aiming to cover more overlapping cases between two hyperboxes.

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

theta_min
[float, optional, default=1] Minimum value of the maximum hyperbox size for continuous
features so that the training loop is still performed. If the value of theta_min is larger than
the value of theta, it will be automatically assigned a value equal to theta.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

alpha
[float, optional, default=0.9] Multiplier factor to reduce the value of maximum hyperbox size
after each training loop.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

132 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

References

[1], [2], [3]

Examples

>>> from sklearn.datasets import load_iris
>>> from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = OnlineGFMM(theta=0.1).fit(X, y)
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

is_exist_missing_value
[boolean] Is there any missing values in continuous features in the training data.

elapsed_training_time
[float] Training time in seconds.

n_passes
[int] Number of training loops.

2.6. incremental learners 133

hyperbox-brain, Release 0.1.1

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data us-
ing the original incremental learning algorithm.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(xl, xu) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(Xl_val, Xu_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the model according to the given training data using the original incremental learning algorithm.

Parameters

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted general fuzzy min-max neural network.

get_sample_explanation(xl, xu)
Get useful information for explaining the reason behind the predicted result for the input pattern

Parameters

xl
[ndarray of shape (n_feature,)] Minimum point of the input pattern which needs to be ex-
plained.

xu
[ndarray of shape (n_feature,)] Maximum point of the input pattern which needs to be
explained.

Returns

134 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class

simple_pruning(Xl_val, Xu_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox

Parameters

Xl_val
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of
validation patterns.

Xu_val
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of
validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

2.6.2 incremental_learner.iol_gfmm

General fuzzy min-max neural network trained by the improved incremental learning algorithm.

class hbbrain.numerical_data.incremental_learner.iol_gfmm.ImprovedOnlineGFMM(theta=0.5,
gamma=1,
is_draw=False,
V=None,
W=None,
C=None,
N_samples=None)

2.6. incremental learners 135

hyperbox-brain, Release 0.1.1

Bases: BaseGFMMClassifier

General fuzzy min-max neural network classifier with an improved online learning algorithm.

This class implements an improved online learning algorithm to train a fuzzy min-max neural network classifier.
This learning algorithm does not allow the occurrence of hyperbox overlapping regions when conducting the
hyperbox expansion procedure. The details of this algorithm can be found in [1].

Note: This implementation uses the accelerated mechanism presented in [2] to accelerate the improved online
learning algorithm.

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

N_samples
[array-like of shape (n_hyperboxes,)] A vector stores the number of samples fully included
in each existing hyperbox.

References

[1], [2]

136 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Examples

>>> from sklearn.datasets import load_iris
>>> from hbbrain.numerical_data.incremental_learner.iol_gfmm import␣
→˓ImprovedOnlineGFMM
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = ImprovedOnlineGFMM(theta=0.1).fit(X, y)
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

is_exist_missing_value
[boolean] Is there any missing values in continuous features in the training data.

elapsed_training_time
[float] Training time in seconds.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data us-
ing the improved incremental learning algorithm.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(xl, xu[, ...]) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X[, type_boundary_handling]) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(Xl_val, Xu_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the model according to the given training data using the improved incremental learning algorithm.

2.6. incremental learners 137

hyperbox-brain, Release 0.1.1

Parameters

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted general fuzzy min-max neural network.

get_sample_explanation(xl, xu, type_boundary_handling=1)
Get useful information for explaining the reason behind the predicted result for the input pattern

Parameters

xl
[ndarray of shape (n_feature,)] Minimum point of the input pattern which needs to be ex-
plained.

xu
[ndarray of shape (n_feature,)] Maximum point of the input pattern which needs to be
explained.

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling samples
located on the boundary.

Returns

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class

predict(X, type_boundary_handling=1)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the probability
generated by number of samples included in winner hyperboxes and membership values or the Manhattan
distance between the central point of winner hyperboxes and the input sample is used to find the final winner
hyperbox that its class label is used for predicting the class label of the input pattern 𝑋𝑖.

138 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling many
winner hyperboxes, i.e., PROBABILITY_MEASURE or MANHATTAN_DIS

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

simple_pruning(Xl_val, Xu_val, y_val, acc_threshold=0.5, keep_empty_boxes=False,
type_boundary_handling=1)

Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox

Parameters

Xl_val
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of
validation patterns.

Xu_val
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of
validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

type_boundary_handling
[int, optional, default=PROBABILITY_MEASURE (aka 1)] The way of handling samples
located on the boundary.

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

2.6. incremental learners 139

hyperbox-brain, Release 0.1.1

2.6.3 incremental_learner.fmnn

Simpson fuzzy min-max neural network classifier trained by the incremental learning algorithm.

class hbbrain.numerical_data.incremental_learner.fmnn.FMNNClassifier(theta=0.5, gamma=1,
is_draw=False, V=None,
W=None, C=None)

Bases: BaseFMNNClassifier

Simpson fuzzy min-max neural network classifier.

This class implements an original incremental learning algorithm to train a fuzzy min-max neural network clas-
sifier. The details of this algorithm can be found in [1].

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

References

[1]

Examples

>>> from sklearn.datasets import load_iris
>>> from hbbrain.numerical_data.incremental_learner.fmnn import FMNNClassifier
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = FMNNClassifier(theta=0.1).fit(X, y)

(continues on next page)

140 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

elapsed_training_time
[float] Training time in seconds.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the fuzzy min-max neural network classifier ac-
cording to the given training data using the Simpson's
original incremental learning algorithm.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the fuzzy min-max neural network classifier according to the given training data using the Simpson’s
original incremental learning algorithm.

Parameters

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted fuzzy min-max neural network.

2.6. incremental learners 141

hyperbox-brain, Release 0.1.1

2.6.4 incremental_learner.efmnn

Fuzzy min-max neural network classifier trained by the enhanced incremental learning algorithm (EFMNN).

class hbbrain.numerical_data.incremental_learner.efmnn.EFMNNClassifier(theta=0.5, gamma=1,
is_draw=False,
V=None, W=None,
C=None)

Bases: BaseFMNNClassifier

Enhanced fuzzy min-max neural network classifier.

This class implements an enhanced learning algorithm for Simpson’s fuzzy min-max neural network. This al-
gorithm use nine test cases for hyperbox overlap test and hyperbox contraction instead of four test cases in the
original Simpson’s fuzzy min-max neural network (FMNN). Additionally, this algorithm use the same hyperbox
expansion condition regarding the maximum hyperbox size as the general fuzzy min-max neural network. The
details of this algorithm can be found in [1].

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

References

[1]

142 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Examples

>>> from sklearn.datasets import load_iris
>>> from hbbrain.numerical_data.incremental_learner.efmnn import EFMNNClassifier
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = EFMNNClassifier(theta=0.1).fit(X, y)
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

elapsed_training_time
[float] Training time in seconds.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the fuzzy min-max neural network according to
the given training data using the enhanced learning
algorithm.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the fuzzy min-max neural network according to the given training data using the enhanced learning
algorithm.

Parameters

2.6. incremental learners 143

hyperbox-brain, Release 0.1.1

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted fuzzy min-max neural network.

2.6.5 incremental_learner.knefmnn

Enhanced fuzzy min-max neural network classifier with k-nearest hyperboxes expansion rules trained by the incremental
learning algorithm.

class hbbrain.numerical_data.incremental_learner.knefmnn.KNEFMNNClassifier(theta=0.5,
gamma=1,
k_neighbors=5,
is_draw=False,
V=None,
W=None,
C=None)

Bases: BaseFMNNClassifier

Enhanced fuzzy min-max neural network classifier with k-nearest hyperboxes expansion rules using the incre-
mental learning algorithm.

This class implements the enhanced online learning algorithm with k-nearest hyperboxes expansion rules to train
the Simpson’s fuzzy min-max neural network. Rather than creating a new hyperbox when the selected winner
hyperbox is not satisfied with the expansion condition as in the enhanced fuzzy min-max neural network, this
algorithm considers up to k winner hyperboxes. The creation of a new hyperbox only happens when all k selected
winner hyperboxes cannot be extended to cover the input pattern. The details of this algorithm can be found in
[1].

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

k_neighbors
[int, optional, default = 5] Number of nearest hyperboxes used for in the consideraton of
expansion rules.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

144 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

References

[1]

Examples

>>> from sklearn.datasets import load_iris
>>> from hbbrain.numerical_data.incremental_learner.knefmnn import KNEFMNNClassifier
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = KNEFMNNClassifier(theta=0.1, k_neighbors=5).fit(X, y)
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

elapsed_training_time
[float] Training time in seconds.

2.6. incremental learners 145

hyperbox-brain, Release 0.1.1

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data us-
ing the enhanced online learning algorithm with the
k-nearest hyperbox selection rule.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the model according to the given training data using the enhanced online learning algorithm with the
k-nearest hyperbox selection rule.

Parameters

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted fuzzy min-max neural network.

146 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

2.6.6 incremental_learner.rfmnn

Refined fuzzy min-max neural network classifier trained by the incremental learning algorithm.

class hbbrain.numerical_data.incremental_learner.rfmnn.RFMNNClassifier(theta=0.5, gamma=1,
is_draw=False,
V=None, W=None,
C=None)

Bases: BaseFMNNClassifier

Refined fuzzy min-max neural network classifier.

This class implements essential functions for a refined online learning algorithm to train a fuzzy min-max neural
network. This algorithm proposes a new expansion procedure for addressing the problems of overlap leniency
and irregularity of hyperbox expansion. It avoids the overlap cases between hyperboxes from different classes,
reducing the number of overlap cases to one (containment case) as in the improved online learning algorithm. It
also introduces a new formula that simplifies the overlap test procedure. Moreover, it introduces a new contraction
procedure for overcoming the data distortion problem and providing more accurate decision boundaries for the
contracted hyperboxes is proposed. The details of this algorithm can be found in [1].

Parameters

theta
[float, optional, default=0.5] Maximum hyperbox size for numerical features.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

is_draw
[boolean, optional, default=False] Whether the construction of hyperboxes can be progres-
sively shown during the training process on a canvas window.

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

References

[1]

2.6. incremental learners 147

hyperbox-brain, Release 0.1.1

Examples

>>> from sklearn.datasets import load_iris
>>> from hbbrain.numerical_data.incremental_learner.rfmnn import RFMNNClassifier
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = RFMNNClassifier(theta=0.1).fit(X, y)
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])

Attributes

elapsed_training_time
[float] Training time in seconds.

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y) Fit the model according to the given training data us-
ing the refined online learning algorithm.

get_n_hyperboxes() Get number of hyperboxes in the trained hyperbox-
based model

get_params([deep]) Get parameters for this estimator.
get_sample_explanation(x) Get useful information for explaining the reason be-

hind the predicted result for the input pattern
initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X) Predict class labels for samples in X.
predict_proba(X) Predict class probabilities of the input samples X.
predict_with_membership(X) Predict class membership values of the input samples

X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(X_val, y_val[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

fit(X, y)
Fit the model according to the given training data using the refined online learning algorithm.

Parameters

X

148 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

Returns

self
[object] Fitted fuzzy min-max neural network.

get_sample_explanation(x)
Get useful information for explaining the reason behind the predicted result for the input pattern

Parameters

x
[ndarray of shape (n_feature,)] The input pattern which needs to be explained.

Returns

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class

predict(X)
Predict class labels for samples in X.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern𝑋𝑖, an additional criterion based on the minimum rfmnn
distance between the input patter 𝑋𝑖 and the winner hyperboxes are used to find the final winner hyperbox
that its class label is used for predicting the class label of the input pattern 𝑋𝑖.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

2.6. incremental learners 149

hyperbox-brain, Release 0.1.1

simple_pruning(X_val, y_val, acc_threshold=0.5, keep_empty_boxes=False)
Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox

Parameters

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

self
A hyperbox-based model with the low-qualitied hyperboxes pruned.

hbbrain.numerical_data.incremental_learner.rfmnn.predict_rfmnn(V, W, C, X, g)
Predict class labels for samples in X.

Note: This is a function to determine the right class labels for X with regard to a trained hyperbox-based
classifier represented by [V, W, C]. It uses the winner-takes-all principle to predict class labels for each sample
in X by assigning the class label of the sample to the class label of the hyperbox with the maximum membership
value to that sample. It will use a specific distance desgined for the refined fuzzy min-max neural networks in
the case of many hyperboxes with different classes having the same maximum membership value.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a minimal point of a
hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points of all
hyperboxes of a trained hyperbox-based model, in which each row is a maximal point of a
hyperbox.

C
[ndarray of shape (n_hyperboxes,)] An array contains all class lables for all hyperboxes of a
trained hyperbox-based model.

X
[array-like of shape (n_samples, n_features)] The data matrix contains input patterns for
which we want to predict the targets.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each dimension.

150 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

2.7 multigranular learners

2.7.1 multigranular_learner.multi_resolution_gfmm

A multi-resolution hierarchical granular representation based classifier using general fuzzy min-max neural network.

class hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM(n_partitions=4,
gran-
u-
lar_theta=[0.1,
0.2,
0.3],
gamma=1,
min_membership_aggregation=0.5,
ran-
dom_state=0)

Bases: BaseHyperboxClassifier

A multi-resolution hierarchical granular representation based classifier using general fuzzy min-max neural net-
work.

This class implements the multi-granular learning algorithm to construct classifiers from multiresolution hierar-
chical granular representations using hyperbox fuzzy sets. This algorithm forms a series of granular inferences
hierarchically through many levels of abstraction. An attractive characteristic of our classifier is that it can main-
tain a high accuracy in comparison to other fuzzy min-max models at a low degree of granularity based on
reusing the knowledge learned from lower levels of abstraction. In addition, our approach can reduce the data
size significantly as well as handle the uncertainty and incompleteness associated with data in real-world appli-
cations. The construction process of the classifier consists of two phases. The first phase is to formulate the
model at the greatest level of granularity, while the later stage aims to reduce the complexity of the constructed
model and deduce it from data at higher abstraction levels. The details of this algorithm can be found in [1].

Parameters

n_partitions
[int, default=4] Number of partitions to split the original training set into disjoint training
sets to build base learners.

granular_theta
[list of float, optional, default=[0.1, 0.2, 0.3]] Maximum hyperbox sizes at granularity levels.

gamma
[float or ndarray of shape (n_features,), optional, default=1] A sensitivity parameter describ-
ing the speed of decreasing of the membership function in each continuous feature.

min_membership_aggregation
[float, optional, default=0.5] Minimum membership value between two hyperboxes aggre-
gated to form a larger sized hyperbox at a higher level of abstraction.

random_state
[int, RandomState instance or None, default=None] Controls the stratified random sampling
rate of the original dataset to form disjoint subsets for training base learners.

2.7. multigranular learners 151

hyperbox-brain, Release 0.1.1

References

[1]

Examples

>>> from sklearn.datasets import load_iris
>>> from hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm import␣
→˓MultiGranularGFMM
>>> X, y = load_iris(return_X_y=True)
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler()
>>> scaler.fit(X)
MinMaxScaler()
>>> X = scaler.transform(X)
>>> clf = MultiGranularGFMM(n_partitions=2, granular_theta=[0.1, 0.2, 0.3, 0.4, 0.
→˓5], gamma=1, min_membership_aggregation=0.6, random_state=0)
>>> clf.fit(X, y)
>>> clf.predict(X[[10, 50, 100]])
array([0, 1, 2])
>>> clf.predict(X[[10, 50, 100]], level=0)
array([0, 1, 2])
>>> print("Number of hyperboxes at granularity 1 = %d"%clf.get_n_hyperboxes(0))
Number of hyperboxes at granularity 1 = 77
>>> clf.predict(X[[10, 50, 100]], level=4)
array([0, 1, 2])
>>> print("Number of hyperboxes at granularity 5 = %d"%clf.get_n_hyperboxes(4))
Number of hyperboxes at granularity 5 = 11

Attributes

granularity_level
[dict] A mapping between the maximum hyperbox size and the granular level.

smallest_theta
[float] Maximum hyperbox size at the highest granularity level.

higher_level_theta
[list of float] Maximum hyperbox sizes of higher abstraction levels apart form the highest
granularity level.

granular_classifiers_
[ndarray of BaseGranular objects with shape (n_granularity_levels,)] A list of general fuzzy
min-max neural networks at all granularity levels.

base_learners_
[list] A list of base learners trained from disjoint subsets of input training patterns.

is_exist_missing_value
[boolean] Is there any missing values in continuous features in the training data.

elapsed_training_time
[float] Training time in seconds.

152 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Methods

delay([delay_constant]) Delay a time period to display hyperboxes
draw_2D_hyperbox_and_boundary_granular_level([...])Draw the existing hyperboxes and their decision

boundaries among classes at a given granularity level.
draw_2D_hyperbox_and_boundary_partitions([...])Draw the existing hyperboxes and their decision

boundaries among classes in a given partition.
draw_hyperbox_and_boundary([window_name,
...])

Draw the existing hyperboxes and their decision
boundaries among classes

fit(X, y[, learning_type, X_val, y_val, ...]) Fit the model according to the given training data us-
ing the multi granularity learning algorithm.

get_n_hyperboxes([level]) Get number of hyperboxes at a given granularity
level.

get_n_hyperboxes_at_partition([partition]) Get number of hyperboxes at a given granularity
level.

get_params([deep]) Get parameters for this estimator.
get_sample_explanation_granular_level(xl,
xu)

Get useful information for explaining the reason be-
hind the predicted result for the input pattern

granular_learning_phase_1(Xl, Xu, y[, ...]) Training a granular general fuzzy min-max neural
network using a learning algorithm in phase 1 to
distribute disjoint subsets into working processes to
build base learners.

granular_learning_phase_2() Training a granular general fuzzy min-max neural
network using a learning algorithm in phase 2 to re-
duce number of hyperboxes while keeping a good
classification performance.

initialise_canvas_graph([n_dims, ...]) Initialise a canvas to draw hyperboxes
predict(X[, level]) Predict class labels for samples in X at a given gran-

ularity level.
predict_at_partitions(Xl, Xu[, partition]) Predict class labels for samples in the form of hy-

perboxes represented by low bounds Xl and upper
bounds Xu at a given granularity level.

predict_proba(X[, level]) Predict class probabilities of the input samples X at a
given granularity level.

predict_with_membership(X[, level]) Predict class memberships of the input samples X at
a given granularity level.

score(X, y[, sample_weight]) Return the mean accuracy on the given test data and
labels.

set_params(**params) Set the parameters of this estimator.
show_sample_explanation(xl, xu, ...[, ...]) Show explanation for predicted results of an input

pattern under the form of parallel coordinates or hy-
perboxes in 2D or 3D planes.

simple_pruning(V, W, C, N_samples, ...[, ...]) Simply prune low qualitied hyperboxes based on a
pre-defined accuracy threshold for each hyperbox

draw_2D_hyperbox_and_boundary_granular_level(window_name='Hyperbox-based classifier and its
decision boundaries', level=0)

Draw the existing hyperboxes and their decision boundaries among classes at a given granularity level.

Note: This method only works on 2-dimensional datasets.

2.7. multigranular learners 153

hyperbox-brain, Release 0.1.1

Parameters

window_name
[str, optional, default=”Hyperbox-based classifier and its decision boundaries”] Name of
plotting window showing hyperboxes and their decision boundaries.

level
[int, optional, default=0] The granularity level needs to draw hyperboxes and its boundaries.

Returns

None.

draw_2D_hyperbox_and_boundary_partitions(window_name='Base learners and its decision
boundaries', partition=0, fig_num=100)

Draw the existing hyperboxes and their decision boundaries among classes in a given partition.

Note: This method only works on 2-dimensional datasets.

Parameters

window_name
[str, optional, default=”Hyperbox-based classifier and its decision boundaries”] Name of
plotting window showing hyperboxes and their decision boundaries.

partition
[int, optional, default=0] The partition needs to draw hyperboxes and its boundary.

fig_num
[int, optional, default=100] Index of the drawing canvas.

Returns

None.

fit(X, y, learning_type=1, X_val=None, y_val=None, acc_threshold=0.5, keep_empty_boxes=False)
Fit the model according to the given training data using the multi granularity learning algorithm.

Parameters

X
[array-like of shape (n_samples, n_features)] Training vector, where n_samples is the num-
ber of samples and n_features is the number of features.

y
[array-like of shape (n_samples,)] Target vector relative to X.

learning_type
[enum (int), optional, default=HETEROGENEOUS_CLASS_LEARNING] Learning
type is used to build base learners from disjoint datasets. It gets two de-
fined enum values being HETEROGENEOUS_CLASS_LEARNING and HOMOGE-
NEOUS_CLASS_LEARNING. Heterogeneous class learning means that base learners are
trained based on the order of input samples. Homogeneous class learning means that input
data are sorted and grouped according to class labels before starting the training process.

X_val
[array-like of shape (n_val_samples, n_features), optional, default=None] A matrix con-
tains a validation set, where n_val_samples is the number of validation samples and
n_features is the number of features.

154 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

y_val
[array-like of shape (n_val_samples,), optional, default=None] Target vector relative to
X_val.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset.

Returns

self
[object] Fitted multigranular general fuzzy min-max neural network.

get_n_hyperboxes(level=-1)
Get number of hyperboxes at a given granularity level.

Parameters

level
[int, optional, default=-1] The granularity level needs to get number of hyperboxes. If level
gets a value of -1, return number of hyperboxes in all granularity levels.

Returns

int
Number of hyperboxes at the given granularity level.

get_n_hyperboxes_at_partition(partition=0)
Get number of hyperboxes at a given granularity level.

Parameters

partition
[int, optional, default=0] The partition needs to get number of base learners.

Returns

int
Number of hyperboxes at the given partition.

get_sample_explanation_granular_level(xl, xu, level=0)
Get useful information for explaining the reason behind the predicted result for the input pattern

Parameters

xl
[ndarray of shape (n_feature,)] Minimum point of the input pattern which needs to be ex-
plained.

xu
[ndarray of shape (n_feature,)] Maximum point of the input pattern which needs to be
explained.

level
[int, optional, default=0] The granularity level is used to generate prediction.

Returns

2.7. multigranular learners 155

hyperbox-brain, Release 0.1.1

y_pred
[int] The predicted class of the input pattern

dict_mem_val_classes
[dictionary] A dictionary stores all membership values for all classes. The key is class label
and the value is the corresponding membership value.

dict_min_point_classes
[dictionary] A dictionary stores all mimimal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the minimal
points of all hyperboxes coressponding to each class

dict_max_point_classes
[dictionary] A dictionary stores all maximal points of hyperboxes having the maximum
membership value for each class. The key is the class label and the value is the maximal
points of all hyperboxes coressponding to each class

granular_learning_phase_1(Xl, Xu, y, learning_type=1, X_val=None, y_val=None, acc_threshold=0.5,
keep_empty_boxes=False)

Training a granular general fuzzy min-max neural network using a learning algorithm in phase 1 to dis-
tribute disjoint subsets into working processes to build base learners. After that, resulting hyperboxes from
all base learners will merged and pruned.

Parameters

Xl
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of
input training patterns.

Xu
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of
input training patterns.

y
[array-like of shape (n_samples,)] Target vector relative to input training hyperboxes [Xl,
Xu].

learning_type
[enum (int), optional, default=HETEROGENEOUS_CLASS_LEARNING] Learning
type is used to build base learners from disjoint datasets. It gets two de-
fined enum values being HETEROGENEOUS_CLASS_LEARNING and HOMOGE-
NEOUS_CLASS_LEARNING. Heterogeneous class learning means that base learners are
trained based on the order of input samples. Homogeneous class learning means that input
data are sorted and grouped according to class labels before starting the training process.

X_val
[array-like of shape (n_samples, n_features)] The data matrix contains validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

156 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Returns

self
[object] A granular general fuzzy min-max neural network trained by a phase-1 learning
algorithm.

granular_learning_phase_2()

Training a granular general fuzzy min-max neural network using a learning algorithm in phase 2 to reduce
number of hyperboxes while keeping a good classification performance.

Returns

self
[object] A granular general fuzzy min-max neural network trained by a phase-2 learning
algorithm.

predict(X, level=-1)
Predict class labels for samples in X at a given granularity level.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖, an additional criterion based on the minimum
distance between the input samples and the centroids of the winner hyperboxes is used to find the final
winner hyperbox that its class label is used for predicting the class label of the input pattern 𝑋𝑖.

Parameters

X
[array-like of shape (n_samples, n_features)] The data matrix for which we want to predict
the targets.

level
[int, optional, default=-1] The granularity level is used to generate predicted classes for the
input testing samples. If this variable gets the values of -1, then the predicted class for each
sample is the class getting the most votes from all available granularity levels.

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

predict_at_partitions(Xl, Xu, partition=0)
Predict class labels for samples in the form of hyperboxes represented by low bounds Xl and upper bounds
Xu at a given granularity level.

Note: In the case there are many winner hyperboxes representing different class labels but with the same
membership value with respect to the input pattern 𝑋𝑖 in the form of an hyperbox represented by a lower
bound 𝑋𝑙𝑖 and an upper bound 𝑋𝑢𝑖, an additional criterion based on the minimum distance between the
centroids of winner hyperboxes and the input sample is used to find the final winner hyperbox that its class
label is used for predicting the class label of the input hyperbox 𝑋𝑖.

Parameters

2.7. multigranular learners 157

hyperbox-brain, Release 0.1.1

Xl
[array-like of shape (n_samples, n_features)] The data matrix containing the lower bounds
of input patterns for which we want to predict the targets.

Xu
[array-like of shape (n_samples, n_features)] The data matrix containing the upper bounds
of input patterns for which we want to predict the targets.

partition
[int, optional, default=0] The base learner at a given partition is used to generate predicted
classes for the input testing samples.

Returns

y_pred
[ndarray of shape (n_samples,)] Vector containing the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

predict_proba(X, level=-1)
Predict class probabilities of the input samples X at a given granularity level.

The predicted class probability at a given granularity level is the fraction of the membership value of the
representative hyperbox of that class at the given granularity level and the sum of all membership values of
all representative hyperboxes of all classes joining the prediction procedure.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

level
[int, optional, default=-1] The granularity level is used to generate predicted class proba-
bilities for the input testing samples. If this variable gets the values of -1, then the predicted
class probability value for each sample is the average of probability values at all available
granularity levels.

Returns

proba
[ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in ascending integers of class labels.

predict_with_membership(X, level=-1)
Predict class memberships of the input samples X at a given granularity level.

The predicted class memberships are the membership values of the representative hyperbox of that class at
a given granularity level.

Parameters

X
[array-like of shape (n_samples, n_features)] The input samples.

level
[int, optional, default=-1] The granularity level is used to generate predicted classes for
the input testing samples. If this variable gets the values of -1, then the predicted class
memberhip value for each sample is the average of all class memberships of all granularity
levels.

Returns

158 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

mem_vals
[ndarray of shape (n_samples, n_classes)] The class memberships of the input samples.
The order of the classes corresponds to that in ascending integers of class labels.

simple_pruning(V, W, C, N_samples, Centroids, Xl_val, Xu_val, y_val, acc_threshold=0.5,
keep_empty_boxes=False)

Simply prune low qualitied hyperboxes based on a pre-defined accuracy threshold for each hyperbox

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for
numerical features of all existing hyperboxes, in which each row is a minimal point of a
hyperbox.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for
numerical features of all existing hyperboxes, in which each row is a minimal point of a
hyperbox.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to exist-
ing hyperboxes.

N_samples
[array-like of shape (n_hyperboxes,)] A vector stores the number of samples fully included
in each existing hyperbox.

Centroids
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all centroid points of all
existing hyperboxes, in which each row is a centroid point of a hyperbox.

Xl_val
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of
validation patterns.

Xu_val
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of
validation patterns.

y_val
[ndarray of shape (n_samples,)] A vector contains the true class label corresponding to
each validation pattern.

acc_threshold
[float, optional, default=0.5] The minimum accuracy for each hyperbox to be kept un-
changed.

keep_empty_boxes
[boolean, optional, default=False] Whether to keep the hyperboxes which do not join the
prediction process on the validation set. If True, keep them, else the decision for keeping
or removing based on the classification accuracy on the validation dataset

Returns

new_V
[array-like of shape (n_new_hyperboxes, n_features)] A matrix stores all minimal points
for numerical features of all remaining hyperboxes after pruning, in which each row is a
minimal point of a hyperbox.

2.7. multigranular learners 159

hyperbox-brain, Release 0.1.1

new_W
[array-like of shape (n_new_hyperboxes, n_features)] A matrix stores all maximal points
for numerical features of all remaining hyperboxes after pruning, in which each row is a
maximal point of a hyperbox.

new_C
[array-like of shape (n_new_hyperboxes,)] A vector stores all class labels correponding to
remaining hyperboxes after pruning.

new_N_samples
[array-like of shape (n_new_hyperboxes,)] A vector stores the number of samples fully
included in each remaining hyperbox after pruning.

new_Centroids
[array-like of shape (n_new_hyperboxes, n_features)] A matrix stores all centroid points of
all remaining hyperboxes after pruning, in which each row is a centroid point of a hyperbox.

hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.convert_granular_theta_to_level(granular_thetas)
Convert a list of maximum hyperbox sizes to the corresponding granular levels.

Parameters

granular_thetas
[list] A list contains all maximum hyperbox sizes for all granularity levels.

Returns

level_dic
[dict] A mapping between the maximum hyperbox size and the granular level.

hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.predict_with_centroids(V,
W,
C,
N_samples,
Cen-
troids,
Xl,
Xu,
g=1)

Predict class labels for samples in X represented in the form of invervals [Xl, Xu]. This is a common function to
determine the right class labels for X wrt. a trained hyperbox-based classifier represented by [V, W, C]. It uses the
winner-takes-all principle to predict class labels for each sample in X by assigning the class label of the sample
to the class label of the hyperbox with the maximum membership value to that sample. It will use an Euclidean
distance from the input pattern to the centroid point of the hyperbox in the case of many winner hyperboxes
with different classes having the same maximum membership value. If two winner hyperboxes show the same
Euclidean distance to their centroid points, the winner hyperbox with a higher number of included samples will
be selected.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

160 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

N_samples
[array-like of shape (n_hyperboxes,)] A vector stores the number of samples fully included
in each existing hyperbox.

Centroids
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all centroid points of all
existing hyperboxes, in which each row is a centroid point of a hyperbox.

Xl
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of input
patterns for which we want to predict the targets.

Xu
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of input
patterns for which we want to predict the targets.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each dimension.

Returns

y_pred
[ndarray of shape (n_samples,)] A vector contains the predictions. In binary and multiclass
problems, this is a vector containing n_samples.

hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.predict_with_membership(V,
W,
C,
Xl,
Xu,
g=1)

Return class membership values for samples in X represented in the form of invervals [Xl, Xu]. This is a common
function to determine the membership values from an input X to a trained hyperbox-based classifier represented
by [V, W, C].

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

Xl
[array-like of shape (n_samples, n_features)] The data matrix contains lower bounds of input
patterns for which we want to predict the targets.

2.7. multigranular learners 161

hyperbox-brain, Release 0.1.1

Xu
[array-like of shape (n_samples, n_features)] The data matrix contains upper bounds of input
patterns for which we want to predict the targets.

g
[float or array-like of shape (n_features,), optional, default=1] A sensitivity parameter de-
scribing the speed of decreasing of the membership function in each dimension.

Returns

mem_vals
[ndarray of shape (n_samples, n_classes)] A vector contains the membership values for all
classes for each input sample which needs to get the membership values.

hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.remove_contained_hyperboxes(V,
W,
C,
N_samples,
Cen-
troids)

Remove all hyperboxes contained in other hyperboxes with the same class label and update the centroids of larger
hyperboxes included the removed hyperboxes.

Parameters

V
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all minimal points for nu-
merical features of all existing hyperboxes, in which each row is a minimal point of a hyper-
box.

W
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all maximum points for
numerical features of all existing hyperboxes, in which each row is a maximum point of a
hyperbox.

C
[array-like of shape (n_hyperboxes,)] A vector stores all class labels correponding to existing
hyperboxes.

N_samples
[array-like of shape (n_hyperboxes,)] A vector stores the number of samples fully included
in each existing hyperbox.

Centroids
[array-like of shape (n_hyperboxes, n_features)] A matrix stores all centroid points of all
existing hyperboxes, in which each row is a centroid point of a hyperbox.

Returns

new_V
[array-like of shape (n_new_hyperboxes, n_features)] A matrix stores all minimal points for
numerical features of all hyperboxes after removal of fully contained hyperboxes, in which
each row is a minimal point of a hyperbox.

new_W
[array-like of shape (n_new_hyperboxes, n_features)] A matrix stores all maximal points for
numerical features of all hyperboxes after removal of fully contained hyperboxes, in which
each row is a maximal point of a hyperbox.

162 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

new_C
[array-like of shape (n_new_hyperboxes,)] A vector stores all class labels correponding to
remaining hyperboxes after removal of fully contained hyperboxes.

new_N_samples
[array-like of shape (n_new_hyperboxes,)] A vector stores the number of samples fully in-
cluded in each hyperbox.

new_Centroids
[array-like of shape (n_new_hyperboxes, n_features)] A matrix stores all centroid points of
all remaining hyperboxes after removal of fully contained hyperboxes, in which each row is
a centroid point of a hyperbox.

n_removed_hyperboxes
[int] Numer of hyperboxes has been removed because they are included in at least one larger
hyperbox with the same class label.

2.8 Tutorials

2.8.1 Batch learners

Agglomerative Learning Algorithm for GFMM

This example shows how to use the GFMM classifier using an agglomerative learning algorithm with full similarity
matrix (AGGLO-SM)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the GFMM
classifiers with AGGLO-SM algorithm require features in the unit cube.

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

2.8. Tutorials 163

hyperbox-brain, Release 0.1.1

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the GFMM classifier using the
agglomerative learning algorithm with full similarity matrix

[5]: agglo_sm_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/batch_
→˓learner/agglo_gfmm.py"))
agglo_sm_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\batch_learner\\agglo_gfmm.py'

Run the found file by showing the execution directions

[6]: !python "{agglo_sm_file_path}" -h

usage: agglo_gfmm.py [-h] -training_file TRAINING_FILE -testing_file
TESTING_FILE [--theta THETA] [--gamma GAMMA]
[--min_simil MIN_SIMIL]
[--simil_measure {mid,long,short}]
[--asimil_type {min,max}] [--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--min_simil MIN_SIMIL
Mimimum similarity value so that two hyperboxes can be
merged (in the range of [0, 1])(default: 0.5)

--simil_measure {mid,long,short}
Type of similarity measure (default: mid)

--asimil_type {min,max}
Type of handling asymmetric similarity matrix

(continues on next page)

164 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

(default: max)
--is_draw IS_DRAW Show the existing hyperboxes during the training

process on the screen (default: False)

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

[9]: !python "{agglo_sm_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" --theta 0.1 --min_simil 0.5 --simil_measure "short" --asimil_type
→˓"max" --gamma 1

Number of hyperboxes = 63
Testing accuracy (using a probability measure for samples on the boundary) = 85.10%
Testing accuracy (using a Manhattan distance for samples on the boundary) = 85.10%

2. Using the GFMM classifier with the agglomerative learning algorithm with full similarity matrix
through its init, fit, and predict functions

[10]: from hbbrain.numerical_data.batch_learner.agglo_gfmm import AgglomerativeLearningGFMM
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

2.8. Tutorials 165

hyperbox-brain, Release 0.1.1

Initializing parameters

[12]: theta = 0.1
min_simil = 0.5
simil_measure = 'short'
asimil_type = 'max'
gamma = 1
is_draw = True

Training

[13]: agglo_gfmm_clf = AgglomerativeLearningGFMM(theta=theta, min_simil=min_simil, simil_
→˓measure=simil_measure, asimil_type=asimil_type, gamma=gamma, is_draw=is_draw)
agglo_gfmm_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: AgglomerativeLearningGFMM(is_draw=True, simil_measure='short', theta=0.1)

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[14]: agglo_gfmm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its decision␣
→˓boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: print("Number of existing hyperboxes = %d"%(agglo_gfmm_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 63

[16]: print("Training time = %f (s)"%agglo_gfmm_clf.elapsed_training_time)

Training time = 39.946154 (s)

Prediction

[17]: from sklearn.metrics import accuracy_score
from hbbrain.constants import MANHATTAN_DIS

[18]: y_pred = agglo_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (using a probability measure for samples on the boundary) = {acc * 100:␣
→˓.2f}%')

Accuracy (using a probability measure for samples on the boundary) = 85.10%

166 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[19]: y_pred = agglo_gfmm_clf.predict(Xtest, MANHATTAN_DIS)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (using a Manhattan distance for samples on the boundary) = {acc * 100: .
→˓2f}%')

Accuracy (using a Manhattan distance for samples on the boundary) = 85.10%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[20]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = agglo_gfmm_clf.
→˓get_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain])

[21]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[22]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.870180
Class 2 has the maximum membership value = 0.961410
Class 1 has the representative hyperbox: V = [0.66562 0.36352] and W = [0.66562 0.36352]
Class 2 has the representative hyperbox: V = [0.57285 0.27229] and W = [0.57285 0.27229]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[23]: agglo_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2.8. Tutorials 167

hyperbox-brain, Release 0.1.1

Using parallel coordinates. This mode best fits for any dimensions

[24]: # Create a parallel coordinates graph
agglo_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/
→˓agglo_gfmm_par_cord.html")

[25]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/agglo_
→˓gfmm_par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/agglo_gfmm_
→˓par_cord.html', width=820, height=520)

[25]: <IPython.lib.display.IFrame at 0x2a509965898>

Accelerated Agglomerative Learning Algorithm for GFMM

This example shows how to use the GFMM classifier using an accelerated agglomerative learning algorithm (AGGLO-
2)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the AGGLO-2-
GFMM classifiers require features in the unit cube.

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

168 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the GFMM classifier using the
accelerated agglomerative learning algorithm

[5]: accel_agglo_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/batch_
→˓learner/accel_agglo_gfmm.py"))
accel_agglo_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\batch_learner\\accel_agglo_gfmm.py'

Run the found file by showing the execution directions

[6]: !python "{accel_agglo_file_path}" -h

usage: accel_agglo_gfmm.py [-h] -training_file TRAINING_FILE -testing_file
TESTING_FILE [--theta THETA] [--gamma GAMMA]
[--min_simil MIN_SIMIL]
[--simil_measure {mid,long,short}]
[--asimil_type {min,max}] [--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--min_simil MIN_SIMIL
Mimimum similarity value so that two hyperboxes can be
merged (in the range of [0, 1])(default: 0.5)

--simil_measure {mid,long,short}
Type of similarity measure (default: mid)

--asimil_type {min,max}
Type of handling asymmetric similarity matrix

(continues on next page)

2.8. Tutorials 169

hyperbox-brain, Release 0.1.1

(continued from previous page)

(default: max)
--is_draw IS_DRAW Show the existing hyperboxes during the training

process on the screen (default: False)

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

[9]: !python "{accel_agglo_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" --theta 0.1 --min_simil 0.5 --simil_measure "short" --asimil_type
→˓"max" --gamma 1

Number of hyperboxes = 61
Testing accuracy (using a probability measure for samples on the boundary) = 85.00%
Testing accuracy (using a Manhattan distance for samples on the boundary) = 85.00%

2. Using the GFMM classifier with the accelerated agglomerative learning algorithm through its init,
fit, and predict functions

[10]: from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

170 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Initializing parameters

[12]: theta = 0.1
min_simil = 0.5
simil_measure = 'short'
asimil_type = 'max'
gamma = 1
is_draw = True

Training

[13]: accel_agglo_gfmm_clf = AccelAgglomerativeLearningGFMM(theta=theta, min_simil=min_simil,␣
→˓simil_measure=simil_measure, asimil_type=asimil_type, gamma=gamma, is_draw=is_draw)
accel_agglo_gfmm_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: AccelAgglomerativeLearningGFMM(is_draw=True, simil_measure='short', theta=0.1)

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[14]: accel_agglo_gfmm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: print("Number of existing hyperboxes = %d"%(accel_agglo_gfmm_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 61

[16]: print("Training time = %f (s)"%accel_agglo_gfmm_clf.elapsed_training_time)

Training time = 3.239400 (s)

Prediction

[17]: from sklearn.metrics import accuracy_score
from hbbrain.constants import MANHATTAN_DIS

[18]: y_pred = accel_agglo_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (using a probability measure for samples on the boundary) = {acc * 100:␣
→˓.2f}%')

Accuracy (using a probability measure for samples on the boundary) = 85.00%

2.8. Tutorials 171

hyperbox-brain, Release 0.1.1

[19]: y_pred = accel_agglo_gfmm_clf.predict(Xtest, MANHATTAN_DIS)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (using a Manhattan distance for samples on the boundary) = {acc * 100: .
→˓2f}%')

Accuracy (using a Manhattan distance for samples on the boundary) = 85.00%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[20]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = accel_agglo_
→˓gfmm_clf.get_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain])

[21]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[22]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.870180
Class 2 has the maximum membership value = 0.961410
Class 1 has the representative hyperbox: V = [0.66562 0.36352] and W = [0.66562 0.36352]
Class 2 has the representative hyperbox: V = [0.57285 0.27229] and W = [0.61106 0.28476]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[23]: accel_agglo_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_
→˓need_explain], min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

172 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Using parallel coordinates. This mode best fits for any dimensions

[24]: # Create a parallel coordinates graph
accel_agglo_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_
→˓need_explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_
→˓cord/accel_agglo_gfmm_par_cord.html")

[25]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/accel_
→˓agglo_gfmm_par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/accel_agglo_
→˓gfmm_par_cord.html', width=820, height=520)

[25]: <IPython.lib.display.IFrame at 0x2b2f6665a90>

2.8.2 Incremental learners

Original Online Learning Algorithm for GFMM

This example shows how to use the GFMM classifier using an original online learning algorithm.

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the GFMM
classifiers require features in the unit cube.

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

2.8. Tutorials 173

hyperbox-brain, Release 0.1.1

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the GFMM classifier using the
original online learning algorithm

[5]: onln_gfmm_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/incremental_
→˓learner/onln_gfmm.py"))
onln_gfmm_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\incremental_learner\\onln_gfmm.py'

Run the found file by showing the execution directions

[6]: !python "{onln_gfmm_file_path}" -h

usage: onln_gfmm.py [-h] -training_file TRAINING_FILE -testing_file
TESTING_FILE [--theta THETA] [--theta_min THETA_MIN]
[--gamma GAMMA] [--alpha ALPHA] [--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--theta_min THETA_MIN

Mimimum value of the maximum hyperbox size to escape
the training loop (in the range of (0, 1]) (default:
0.5)

--gamma GAMMA A sensitivity parameter describing the speed of
decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--alpha ALPHA Multiplier showing the decrease of theta in each step
(default: 0.9)

--is_draw IS_DRAW Show the existing hyperboxes during the training
process on the screen (default: False)

174 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

[9]: !python "{onln_gfmm_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" --theta 0.1 --theta_min 0.1 --gamma 1

Number of hyperboxes = 53
Testing accuracy = 84.50%

2. Using the GFMM classifier with original online learning algorithm through its init, fit, and predict
functions

[10]: from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

[11]: import pandas as pd

Create training and testing data sets

[12]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

2.8. Tutorials 175

hyperbox-brain, Release 0.1.1

Initializing parameters

[13]: theta = 0.1
theta_min = 0.1
gamma = 1
is_draw = True

Training

[14]: onln_gfmm_clf = OnlineGFMM(theta=theta, theta_min=theta_min, gamma=gamma, is_draw=is_
→˓draw)
onln_gfmm_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[14]: OnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1,
1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1,
2, 2, 1, 2, 2, 2, 2, 2, 1]),

V=array([[0.42413 , 0.53516],
[0.70577 , 0.397105],
[0.82785 , 0.78025],
[0.66038 , 0.51128],
[0.48794 , 0.672],
[0.26651 , 0.18424],
[0.32289 , 0.60194],
[0.19944 , 0.03],
[0.29343 , 0.28975],
[0.63683 , 0.6936],
[0.32906 , 0.55512],
[0.03 , 0.47757],
[0.54...
[0.815 , 0.397095],
[0.67906 , 0.83605],
[0.37033 , 0.26124],
[0.52197 , 0.91371],
[0.66037 , 0.57837],
[0.52621 , 0.66846],
[0.80583 , 0.43242],
[0.79935 , 0.7757],
[0.35813 , 0.58772],
[0.79516 , 0.32629],
[0.70743 , 0.50325],
[0.36057 , 0.71561],
[0.72496 , 0.38674],
[0.28822 , 0.62174],
[0.14737 , 0.28498],
[0.56487 , 0.17003],
[0.68469 , 0.2221],
[0.55763 , 0.43813]]),

is_draw=True, theta=0.1, theta_min=0.1)

176 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[15]: onln_gfmm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its decision␣
→˓boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[16]: print("Number of existing hyperboxes = %d"%(onln_gfmm_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 53

Prediction

[17]: from sklearn.metrics import accuracy_score

[18]: y_pred = onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 84.50%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[19]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = onln_gfmm_clf.
→˓get_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain])

[20]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[21]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.870180
Class 2 has the maximum membership value = 0.984660
Class 1 has the representative hyperbox: V = [0.58339 0.36352] and W = [0.66562 0.
→˓38375437]
Class 2 has the representative hyperbox: V = [0.57285 0.24904] and W = [0.65695 0.31638]

2.8. Tutorials 177

hyperbox-brain, Release 0.1.1

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[22]: onln_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Using parallel coordinates. This mode best fits for any dimensions

[23]: # Create a parallel coordinates graph
onln_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/
→˓onln_gfmm_par_cord_1.html")

[24]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/onln_
→˓gfmm_par_cord_1.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/onln_gfmm_
→˓par_cord_1.html', width=820, height=520)

[24]: <IPython.lib.display.IFrame at 0x1e6eeeab9b0>

An example for the wrong prediction case with the demonstration

[25]: # Try another sample
sample_need_explain = 1
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = onln_gfmm_clf.
→˓get_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain])

[26]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.485900, 0.476500] is 2 and real class is 1

[27]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))
print("Hyperboxes:")
for key in min_points_classes:

print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_
→˓points_classes[key], max_points_classes[key]))

178 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Membership values:
Class 1 has the maximum membership value = 0.941340
Class 2 has the maximum membership value = 0.955140
Hyperboxes:
Class 1 has the representative hyperbox: V = [0.42413 0.53516] and W = [0.52084 0.60972]
Class 2 has the representative hyperbox: V = [0.49255 0.39125] and W = [0.52124 0.43164]

[28]: onln_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Using parallel coordinates. This mode best fits for any dimensions

[29]: # Create a parallel coordinates graph
onln_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/
→˓onln_gfmm_par_cord_2.html")

[30]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/onln_
→˓gfmm_par_cord_2.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/onln_gfmm_
→˓par_cord_2.html', width=820, height=520)

[30]: <IPython.lib.display.IFrame at 0x1e6ee6da4e0>

Improved Online Learning Algorithm for GFMM

This example shows how to use the GFMM classifier using an improved online learning algorithm (IOL-GFMM)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the GFMM
classifiers require features in the unit cube.

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

2.8. Tutorials 179

hyperbox-brain, Release 0.1.1

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the GFMM classifier using the
improved online learning algorithm

[5]: iol_gfmm_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/incremental_
→˓learner/iol_gfmm.py"))
iol_gfmm_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\incremental_learner\\iol_gfmm.py'

Run the found file by showing the execution directions

[6]: !python "{iol_gfmm_file_path}" -h

usage: iol_gfmm.py [-h] -training_file TRAINING_FILE -testing_file
TESTING_FILE [--theta THETA] [--gamma GAMMA]
[--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--is_draw IS_DRAW Show the existing hyperboxes during the training
process on the screen (default: False)

180 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

[9]: !python "{iol_gfmm_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" --theta 0.1 --gamma 1

Number of hyperboxes = 68
Testing accuracy (using a probability measure for samples on the boundary) = 87.20%

2. Using the GFMM classifier with IOL-GFMM algorithm through its init, fit, and predict functions

[10]: from hbbrain.numerical_data.incremental_learner.iol_gfmm import ImprovedOnlineGFMM
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

2.8. Tutorials 181

hyperbox-brain, Release 0.1.1

Initializing parameters

[12]: theta = 0.1
gamma = 1
is_draw = True

Training

[13]: iol_gfmm_clf = ImprovedOnlineGFMM(theta=theta, gamma=gamma, is_draw=is_draw)
iol_gfmm_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: ImprovedOnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1,␣
→˓2, 1,

2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2,
1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2]),

N_samples=array([11, 3, 2, 10, 5, 6, 6, 2, 7, 6, 3, 1, 7, ␣
→˓6, 2, 11, 1,

5, 7, 2, 3, 9, 3, 4, 6, 9, 10, 5, 8, 13, 4, 4, 3, 3,
6, 4, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1,
5, 2, 1, 1, 6, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1]),

V=array([[0.42413, 0.5351...
[0.52621 , 0.59493],
[0.79935 , 0.7757],
[0.6248 , 0.39922],
[0.79516 , 0.32629],
[0.66562 , 0.36352],
[0.36057 , 0.71561],
[0.72496 , 0.38674],
[0.70743 , 0.50325],
[0.40233 , 0.67232],
[0.28822 , 0.62174],
[0.14737 , 0.28498],
[0.75421 , 0.40498],
[0.59655 , 0.56029],
[0.91185 , 0.48697],
[0.6504 , 0.51624],
[0.68853 , 0.41466],
[0.56487 , 0.17003],
[0.59235 , 0.54123],
[0.68469 , 0.2221]]),

is_draw=True, theta=0.1)

182 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[14]: iol_gfmm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier using IOL-GFMM and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: print("Number of existing hyperboxes = %d"%(iol_gfmm_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 68

Prediction

[16]: from sklearn.metrics import accuracy_score

Predict the class label for input samples using a probability measure based on the number of sam-
ples included inside the winner hyperboxes for the samples located on the decision boundaries

[17]: y_pred = iol_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 87.20%

Predict the class label for input samples using Manhattan distance measure for the samples located
on the decision boundaries

[18]: from hbbrain.constants import MANHATTAN_DIS
y_pred = iol_gfmm_clf.predict(Xtest, MANHATTAN_DIS)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (Manhattan distance for samples on the decision boundaries) = {acc *␣
→˓100: .2f}%')

Accuracy (Manhattan distance for samples on the decision boundaries) = 87.20%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[19]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = iol_gfmm_clf.
→˓get_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain])

[20]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

2.8. Tutorials 183

hyperbox-brain, Release 0.1.1

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[21]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.870180
Class 2 has the maximum membership value = 0.984660
Class 1 has the representative hyperbox: V = [0.66562 0.36352] and W = [0.66562 0.36352]
Class 2 has the representative hyperbox: V = [0.57285 0.24904] and W = [0.65695 0.31638]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates. For 4 or more dimensions, parallel coordinates should be used

Using rectangles to show explanations

[22]: iol_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Using parallel coordinates. This mode best fits for any dimensions

[23]: # Create a parallel coordinates graph
iol_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/
→˓iol_gfmm_par_cord.html")

[24]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/iol_
→˓gfmm_par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/iol_gfmm_par_
→˓cord.html', width=820, height=520)

[24]: <IPython.lib.display.IFrame at 0x23beb125e10>

184 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Fuzzy Min-Max Neural Network with Original Online Learning Algorithm

This example shows how to use Simpson’s fuzzy min-max neural network with the original online learning algorithm
(FMNN)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the FMNN
classifiers require features in the unit cube.

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the FMNN classifier using the
original online learning algorithm

[5]: fmnn_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/incremental_
→˓learner/fmnn.py"))
fmnn_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\incremental_learner\\fmnn.py'

2.8. Tutorials 185

hyperbox-brain, Release 0.1.1

Run the found file by showing the execution directions

[6]: !python "{fmnn_file_path}" -h

usage: fmnn.py [-h] -training_file TRAINING_FILE -testing_file TESTING_FILE
[--theta THETA] [--gamma GAMMA] [--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--is_draw IS_DRAW Show the existing hyperboxes during the training
process on the screen (default: False)

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

[9]: !python "{fmnn_file_path}" -training_file "{training_data_file}" -testing_file "{testing_
→˓data_file}" --theta 0.1 --gamma 1

Number of hyperboxes = 91
Testing accuracy = 85.30%

186 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

2. Using the Simpson’s FMNN classifier through init, fit, and predict functions

[10]: from hbbrain.numerical_data.incremental_learner.fmnn import FMNNClassifier
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

Initializing parameters

[12]: theta = 0.1
gamma = 1
is_draw = True

Training

[13]: fmnn_clf = FMNNClassifier(theta=theta, gamma=gamma, is_draw=is_draw)
fmnn_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: FMNNClassifier(C=array([1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2,
2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1,
2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2,
2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2,
1, 1, 1]),

V=array([[0.36239 , 0.55942],
[0.64082 , 0.43016875],
[0.91059 , 0.82085],
[0.65328 , 0.50326],
[0.46107 , 0.68306],
[0.29812 , 0.18424],
[0.33593 , 0.68775],
[0.1...
[0.25621 , 0.62174],
[0.42403 , 0.7592],

(continues on next page)

2.8. Tutorials 187

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.79157 , 0.59996],
[0.72496 , 0.34978],
[0.36842 , 0.76576],
[0.73681 , 0.71261],
[0.66773 , 0.31155],
[0.32289 , 0.6747],
[0.28077 , 0.27116],
[0.61106 , 0.28476],
[0.75421 , 0.40498],
[0.38038 , 0.67232],
[0.36745 , 0.52006],
[0.91185 , 0.48697],
[0.35813 , 0.58584],
[0.25924 , 0.42696],
[0.70685 , 0.64383],
[0.75047 , 0.6092],
[0.72842 , 0.61048]]),

is_draw=True, theta=0.1)

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[14]: fmnn_clf.draw_hyperbox_and_boundary("The trained Simpson's FMNN classifier and its␣
→˓decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: print("Number of existing hyperboxes = %d"%(fmnn_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 91

Predicting

[16]: from sklearn.metrics import accuracy_score

[17]: y_pred = fmnn_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 85.30%

188 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[18]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = fmnn_clf.get_
→˓sample_explanation(Xtest[sample_need_explain])

[19]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[20]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.960506
Class 2 has the maximum membership value = 1.000000
Class 1 has the representative hyperbox: V = [0.55763 0.3916775] and W = [0.67326 0.
→˓43015875]
Class 2 has the representative hyperbox: V = [0.56487 0.17003] and W = [0.57285 0.27229]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[21]: fmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain],␣
→˓min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Using parallel coordinates. This mode best fits for any dimensions

[22]: # Create a parallel coordinates graph
fmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain],␣
→˓min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/fmnn_par_
→˓cord.html")

[23]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs

(continues on next page)

2.8. Tutorials 189

hyperbox-brain, Release 0.1.1

(continued from previous page)

On the local notebook, we only need to load from the graph storing at 'par_cord/fmnn_
→˓par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/fmnn_par_
→˓cord.html', width=820, height=520)

[23]: <IPython.lib.display.IFrame at 0x276832ea828>

Enhanced Online Learning Algorithm for FMNN

This example shows how to use the Simpson’s Fuzzy Min-Max Neural Network trained by an enhanced online learning
algorithm (EFMNN)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the EFMNN
classifiers require features in the unit cube.

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

190 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Create the path to the Python file containing the implementation of the FMNN using the enhanced
online learning algorithm

[5]: efmnn_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/incremental_
→˓learner/efmnn.py"))
efmnn_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\incremental_learner\\efmnn.py'

Run the found file by showing the execution directions

[6]: !python "{efmnn_file_path}" -h

usage: efmnn.py [-h] -training_file TRAINING_FILE -testing_file TESTING_FILE
[--theta THETA] [--gamma GAMMA] [--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--is_draw IS_DRAW Show the existing hyperboxes during the training
process on the screen (default: False)

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

2.8. Tutorials 191

hyperbox-brain, Release 0.1.1

Run a demo program

[9]: !python "{efmnn_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" --theta 0.1 --gamma 1

Number of hyperboxes = 77
Testing accuracy = 85.80%

2. Using the EFMNN through its init, fit, and predict functions

[10]: from hbbrain.numerical_data.incremental_learner.efmnn import EFMNNClassifier
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

Initializing parameters

[12]: theta = 0.1
gamma = 1
is_draw = True

Training

[13]: efmnn_clf = EFMNNClassifier(theta=theta, gamma=gamma, is_draw=is_draw)
efmnn_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: EFMNNClassifier(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2,␣
→˓1,

1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2,
1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2,
2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2]),

(continues on next page)

192 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

V=array([[0.42413 , 0.53516],
[0.74088 , 0.43310562],
[0.91059 , 0.82085],
[0.64586 , 0.50818437],
[0.4713 , 0.672],
[0.33484 , 0.18424],
[0.32289 , 0.59994],
[0.19944 , 0.03],
[0.28077 , 0.26124...
[0.36842 , 0.77238],
[0.36057 , 0.71561],
[0.6733 , 0.29485],
[0.25621 , 0.62174],
[0.14737 , 0.28498],
[0.72496 , 0.34978],
[0.73681 , 0.71261],
[0.76138 , 0.32629],
[0.52124 , 0.41288],
[0.42647 , 0.66846],
[0.91185 , 0.48697],
[0.29163 , 0.086547],
[0.35813 , 0.58584],
[0.56487 , 0.17003],
[0.287 , 0.46814],
[0.44575 , 0.64683],
[0.25924 , 0.42696],
[0.77398 , 0.5357],
[0.68469 , 0.2221]]),

is_draw=True, theta=0.1)

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[14]: efmnn_clf.draw_hyperbox_and_boundary("The trained FMNNN and its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: print("Number of existing hyperboxes = %d"%(efmnn_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 77

2.8. Tutorials 193

hyperbox-brain, Release 0.1.1

Prediction

[16]: from sklearn.metrics import accuracy_score

[17]: y_pred = efmnn_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 85.80%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[18]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = efmnn_clf.get_
→˓sample_explanation(Xtest[sample_need_explain])

[19]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[20]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.957157
Class 2 has the maximum membership value = 0.995862
Class 1 has the representative hyperbox: V = [0.55763 0.40507] and W = [0.58339 0.43813]
Class 2 has the representative hyperbox: V = [0.57285 0.24904] and W = [0.66773 0.31638]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[21]: efmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain],
→˓ min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

194 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Using parallel coordinates. This mode best fits for any dimensions

[22]: # Create a parallel coordinates graph
efmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain],
→˓ min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/efmnn_par_
→˓cord.html")

[23]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/efmnn_
→˓par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/efmnn_par_
→˓cord.html', width=820, height=520)

[23]: <IPython.lib.display.IFrame at 0x210cf663c18>

Enhanced Online Learning Algorithm with K-nearest Hyperboxes Selection for FMNN

This example shows how to use the Simpson’s Fuzzy Min-Max Neural Network classifier using an enhanced online
learning algorithm with k-nearest hyperboxes selection (KNEFMNN)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the KNEFMNN
classifier require features in the unit cube.

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

2.8. Tutorials 195

hyperbox-brain, Release 0.1.1

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the Simpson’s FMNN classifier
using the enhanced online learning algorithm with k-nearest hyperboxes selection

[5]: knefmnn_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/incremental_
→˓learner/knefmnn.py"))
knefmnn_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\incremental_learner\\knefmnn.py'

Run the found file by showing the execution directions

[6]: !python "{knefmnn_file_path}" -h

usage: knefmnn.py [-h] -training_file TRAINING_FILE -testing_file TESTING_FILE
[--theta THETA] [--gamma GAMMA] [--k_neighbors K_NEIGHBORS]
[--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--k_neighbors K_NEIGHBORS
The number of nearest hyperboxes is considered for the
hyperbox expansion process

--is_draw IS_DRAW Show the existing hyperboxes during the training
process on the screen (default: False)

196 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

[9]: !python "{knefmnn_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" --theta 0.1 --k_neighbors 5 --gamma 1

Number of hyperboxes = 51
Testing accuracy = 86.60%

2. Using the KNEFMNN classifier through its init, fit, and predict functions

[10]: from hbbrain.numerical_data.incremental_learner.knefmnn import KNEFMNNClassifier
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

2.8. Tutorials 197

hyperbox-brain, Release 0.1.1

Initializing parameters

[12]: theta = 0.1
k_neighbors = 5
gamma = 1
is_draw = True

Training

[13]: knefmnn_clf = KNEFMNNClassifier(theta=theta, k_neighbors=k_neighbors, gamma=gamma, is_
→˓draw=is_draw)
knefmnn_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: KNEFMNNClassifier(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2,
→˓ 1,

1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2,
1, 2, 2, 2, 2, 2, 1]),

V=array([[0.42413 , 0.53516],
[0.70577 , 0.397105],
[0.82785 , 0.78025],
[0.66038 , 0.51128],
[0.48794 , 0.672],
[0.26651 , 0.18424],
[0.32289 , 0.59994],
[0.19944 , 0.03],
[0.28077 , 0.26124],
[0.63683 , 0.6936],
[0.28822 , 0.55512],
[0.03 , 0.47757],
[0...
[0.91185 , 0.5761],
[0.2246 , 0.13567],
[0.25929 , 0.81558],
[0.815 , 0.397095],
[0.67906 , 0.83605],
[0.52197 , 0.91371],
[0.66037 , 0.57837],
[0.49408 , 0.66846],
[0.80583 , 0.43242],
[0.79935 , 0.7757],
[0.35813 , 0.58772],
[0.79516 , 0.32629],
[0.36057 , 0.71561],
[0.68469 , 0.29485],
[0.70743 , 0.50325],
[0.25621 , 0.62174],
[0.14737 , 0.28498],
[0.56487 , 0.17003],

(continues on next page)

198 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.55763 , 0.43813]]),
is_draw=True, theta=0.1)

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[14]: knefmnn_clf.draw_hyperbox_and_boundary("The trained KNEFMNN classifier and its decision␣
→˓boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: print("Number of existing hyperboxes = %d"%(knefmnn_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 51

Prediction

[16]: from sklearn.metrics import accuracy_score

[17]: y_pred = knefmnn_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 86.60%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[18]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = knefmnn_clf.
→˓get_sample_explanation(Xtest[sample_need_explain])

[19]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[20]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

2.8. Tutorials 199

hyperbox-brain, Release 0.1.1

Membership values:
Class 1 has the maximum membership value = 0.964263
Class 2 has the maximum membership value = 0.990050
Class 1 has the representative hyperbox: V = [0.58339 0.3649] and W = [0.66091 0.
→˓38616125]
Class 2 has the representative hyperbox: V = [0.57285 0.27229] and W = [0.66773 0.36489]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[21]: knefmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Using parallel coordinates. This mode best fits for any dimensions

[22]: # Create a parallel coordinates graph
knefmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_
→˓explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/
→˓knefmnn_par_cord.html")

[23]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/knefmnn_
→˓par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/knefmnn_par_
→˓cord.html', width=820, height=520)

[23]: <IPython.lib.display.IFrame at 0x2da0fabd518>

Refined Online Learning Algorithm for FMNN

This example shows how to use the fuzzy min-max neural network classifier using a refined online learning algorithm
(RFMNN)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the RFMNN
classifiers require features in the unit cube.

200 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the RFMNN classifier

[5]: rfmnn_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/incremental_
→˓learner/rfmnn.py"))
rfmnn_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\incremental_learner\\rfmnn.py'

Run the found file by showing the execution directions

[6]: !python "{rfmnn_file_path}" -h

usage: rfmnn.py [-h] -training_file TRAINING_FILE -testing_file TESTING_FILE
[--theta THETA] [--gamma GAMMA] [--is_draw IS_DRAW]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

(continues on next page)

2.8. Tutorials 201

hyperbox-brain, Release 0.1.1

(continued from previous page)

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--is_draw IS_DRAW Show the existing hyperboxes during the training
process on the screen (default: False)

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

[9]: !python "{rfmnn_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" --theta 0.1 --gamma 1

Number of hyperboxes = 95
Testing accuracy = 86.20%

2. Using the RFMNN classifier through its init, fit, and predict functions

[10]: from hbbrain.numerical_data.incremental_learner.rfmnn import RFMNNClassifier
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

(continues on next page)

202 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

Initializing parameters

[12]: theta = 0.1
gamma = 1
is_draw = True

Training

[13]: rfmnn_clf = RFMNNClassifier(theta=theta, gamma=gamma, is_draw=is_draw)
rfmnn_clf.fit(Xtr, ytr)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: RFMNNClassifier(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2,␣
→˓1,

2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1,
2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2,
1, 2, 2, 1, 2, 1, 2]),

V=array([[0.42413 , 0.53516],
[0.77074 , 0.48234],
[0.91059 , 0.82085],
[0.64586 , 0.46818],
[0.4713 , 0.672],
[0.33484 , 0.18424],
[0.32289 , 0.60093],
[...
[0.72496 , 0.34978],
[0.73681 , 0.71261],
[0.38312 , 0.65216],
[0.37646 , 0.62974],
[0.76138 , 0.32629],
[0.52124 , 0.41288],
[0.59655 , 0.56029],
[0.38038 , 0.67232],
[0.91185 , 0.48697],
[0.6504 , 0.51624],
[0.65227 , 0.56081],
[0.29163 , 0.086547],
[0.35813 , 0.58584],
[0.56487 , 0.17003],
[0.287 , 0.46814],
[0.44575 , 0.64683],
[0.25924 , 0.42696],
[0.77398 , 0.5357],

(continues on next page)

2.8. Tutorials 203

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.68469 , 0.2221]]),
is_draw=True, theta=0.1)

The code below shows how to display decision boundaries among classes if input data are 2-
dimensional

[14]: rfmnn_clf.draw_hyperbox_and_boundary("The trained RFMNN classifier and its decision␣
→˓boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: print("Number of existing hyperboxes = %d"%(rfmnn_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 95

[16]: print("Traning time = %f (s)"%rfmnn_clf.elapsed_training_time)

Traning time = 48.427096 (s)

Prediction

[17]: from sklearn.metrics import accuracy_score

[18]: y_pred = rfmnn_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 86.20%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[19]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = rfmnn_clf.get_
→˓sample_explanation(Xtest[sample_need_explain])

[20]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.571640, 0.233700] is 2 and real class is 2

[21]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

(continues on next page)

204 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.957157
Class 2 has the maximum membership value = 0.995862
Class 1 has the representative hyperbox: V = [0.55763 0.40507] and W = [0.58339 0.43813]
Class 2 has the representative hyperbox: V = [0.57285 0.24904] and W = [0.66773 0.31638]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[22]: rfmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain],
→˓ min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Using parallel coordinates. This mode best fits for any dimensions

[23]: # Create a parallel coordinates graph
rfmnn_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_need_explain],
→˓ min_points_classes, max_points_classes, y_pred_input_0, file_path="par_cord/rfmnn_par_
→˓cord.html")

[24]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/rfmnn_
→˓par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/rfmnn_par_
→˓cord.html', width=820, height=520)

[24]: <IPython.lib.display.IFrame at 0x1de537f45f8>

2.8.3 Multigranular learners

Multi-resolution Hierarchical Granular Representation based Classifier using GFMM

This example shows how to use the multi-resolution hierarchical granular representation based classifier using general
fuzzy min-max neural network.

2.8. Tutorials 205

hyperbox-brain, Release 0.1.1

1. Execute directly from the python file

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

Get the path to the this jupyter notebook file

[3]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\docs\\tutorials'

Get the home folder of the Hyperbox-Brain project

[4]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the multi-resolution hierarchical
granular representation based classifier using the general fuzzy min-max neural network

[5]: multi_resolution_gfmm_file_path = os.path.join(project_dir, Path("hbbrain/numerical_data/
→˓multigranular_learner/multi_resolution_gfmm.py"))
multi_resolution_gfmm_file_path

[5]: 'C:\\hyperbox-brain\\hbbrain\\numerical_data\\multigranular_learner\\multi_resolution_
→˓gfmm.py'

Run the found file by showing the execution directions

[6]: !python "{multi_resolution_gfmm_file_path}" -h

usage: multi_resolution_gfmm.py [-h] -training_file TRAINING_FILE
-testing_file TESTING_FILE
[--val_file VAL_FILE]
[--n_partitions N_PARTITIONS]
[--granular_theta GRANULAR_THETA]
[--gamma GAMMA]
[--min_membership_aggregation MIN_MEMBERSHIP_AGGREGATION]

The description of parameters

(continues on next page)

206 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

optional arguments:
--val_file VAL_FILE The path to validation data file (including file name)
--n_partitions N_PARTITIONS

Number of disjoint partitions to train base learners
(default: 4)

--granular_theta GRANULAR_THETA
Granular maximum hyperbox sizes (default: [0.1, 0.2,
0.3, 0.4, 0.5])

--gamma GAMMA A sensitivity parameter describing the speed of
decreasing of the membership function in each
dimension (larger than 0) (default: 1)

--min_membership_aggregation MIN_MEMBERSHIP_AGGREGATION
Minimum membership value for hyperbox aggregration at
higher granular levels (in the range of [0, 1])
(default: 0)

Create the path to training and testing datasets stored in the dataset folder

[7]: training_data_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
training_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: testing_data_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))
testing_data_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

Run a demo program

If the argument ‘validation_file’ gets the value of validation file path, the pruning procedure will be
used after merging all hyperboxes from base learners. Otherwise, the pruning procedure will not be
used.

[9]: !python "{multi_resolution_gfmm_file_path}" -training_file "{training_data_file}" -
→˓testing_file "{testing_data_file}" --n_partitions 4 --granular_theta "[0.1, 0.2, 0.3,␣
→˓0.4, 0.5, 0.6]" --gamma 1 --min_membership_aggregation 0.1

Training time: 3.847 (s)
Testing accuracy (using voting from all granularity levels) = 86.70%
Prediction of each base learner at a given partition:

2.8. Tutorials 207

hyperbox-brain, Release 0.1.1

[Parallel(n_jobs=4)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=4)]: Done 2 out of 4 | elapsed: 3.6s remaining: 3.6s
[Parallel(n_jobs=4)]: Done 4 out of 4 | elapsed: 3.7s finished

Partition 0 - Testing accuracy = 84.00% - No boxes = 27
Partition 1 - Testing accuracy = 87.80% - No boxes = 29
Partition 2 - Testing accuracy = 85.40% - No boxes = 27
Partition 3 - Testing accuracy = 87.10% - No boxes = 26
Prediction for each granularity level:
Level 1 - Testing accuracy = 85.10% - No boxes = 101
Level 2 - Testing accuracy = 88.20% - No boxes = 38
Level 3 - Testing accuracy = 87.10% - No boxes = 27
Level 4 - Testing accuracy = 86.10% - No boxes = 20
Level 5 - Testing accuracy = 86.20% - No boxes = 14
Level 6 - Testing accuracy = 82.60% - No boxes = 10

2. Using the multi-resolution hierarchical granular representation based classifier using general
fuzzy min-max neural network through init, fit, and predict functions

[10]: from hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm import␣
→˓MultiGranularGFMM
import pandas as pd

Create training and testing data sets

[11]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

Initializing parameters

[12]: # number of disjoint partitions to build base learners
n_partitions = 4
a list of maximum hyperbox sizes for granularity levels
granular_theta = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
minimum membership values between two hyperboxes aggregated at higher abstraction␣
→˓levels
min_membership_aggregation = 0.1
the speed of decreasing of membership values
gamma = 1

208 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Training

[13]: from hbbrain.constants import HETEROGENEOUS_CLASS_LEARNING
multi_granular_gfmm_clf = MultiGranularGFMM(n_partitions=n_partitions, granular_
→˓theta=granular_theta, gamma=gamma, min_membership_aggregation=min_membership_
→˓aggregation)
Training using the heterogeneous model for class labels.
multi_granular_gfmm_clf.fit(Xtr, ytr, learning_type=HETEROGENEOUS_CLASS_LEARNING)

[Parallel(n_jobs=4)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=4)]: Done 2 out of 4 | elapsed: 2.9s remaining: 2.9s
[Parallel(n_jobs=4)]: Done 4 out of 4 | elapsed: 2.9s finished

[13]: MultiGranularGFMM(granular_theta=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
min_membership_aggregation=0.1)

The code below shows how to display decision boundaries among classes at a given granularity
level if input data are 2-dimensional

[14]: # showing hyperboxes and boundaries at the first granularity level (level 1). Note that␣
→˓the order of the level starts from 0.
multi_granular_gfmm_clf.draw_2D_hyperbox_and_boundary_granular_level(window_name=
→˓"Hyperbox-based classifier and its decision boundaries at level 1", level = 0)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[15]: # showing hyperboxes and boundaries at the last granularity level (level 6)
multi_granular_gfmm_clf.draw_2D_hyperbox_and_boundary_granular_level(window_name=
→˓"Hyperbox-based classifier and its decision boundaries at level 6", level = 5)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[16]: # Get total number of hyperboxes at all granularity levels
print("Total number of hyperboxes at all granularity levels = %d"%multi_granular_gfmm_
→˓clf.get_n_hyperboxes(level=-1))

Total number of hyperboxes at all granularity levels = 210

[17]: # Get number of hyperboxes at a given granularity level
print("Total number of hyperboxes at the first granularity levels = %d"%multi_granular_
→˓gfmm_clf.get_n_hyperboxes(level=0))
print("Total number of hyperboxes at the last granularity levels = %d"%multi_granular_
→˓gfmm_clf.get_n_hyperboxes(level=5))

Total number of hyperboxes at the first granularity levels = 101
Total number of hyperboxes at the last granularity levels = 10

2.8. Tutorials 209

hyperbox-brain, Release 0.1.1

Prediction

Using all GFMM models from all granularity level to make the final prediction using majority voting,
in which each granularity level contributes one predicted result for each input pattern and the final
predicted result is the class getting most of votes from the models at all granularity levels.

[18]: from sklearn.metrics import accuracy_score

[19]: y_pred = multi_granular_gfmm_clf.predict(Xtest, level=-1)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (majority voting) = {acc * 100: .2f}%')

Accuracy (majority voting) = 86.70%

Use a certain granularity level to make prediction

[20]: print("Prediction for each granularity level:")
for i in range(len(granular_theta)):

y_pred_lv = multi_granular_gfmm_clf.predict(Xtest, level=i)
acc_lv = accuracy_score(ytest, y_pred_lv)
n_boxes = multi_granular_gfmm_clf.get_n_hyperboxes(i)
print(f'Level {i + 1} - Testing accuracy = {acc_lv * 100: .2f}% - No hyperboxes = {n_

→˓boxes}')

Prediction for each granularity level:
Level 1 - Testing accuracy = 85.10% - No hyperboxes = 101
Level 2 - Testing accuracy = 88.20% - No hyperboxes = 38
Level 3 - Testing accuracy = 87.10% - No hyperboxes = 27
Level 4 - Testing accuracy = 86.10% - No hyperboxes = 20
Level 5 - Testing accuracy = 86.20% - No hyperboxes = 14
Level 6 - Testing accuracy = 82.60% - No hyperboxes = 10

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class using the model at a given granularity level

[21]: sample_need_explain = 0
Using the trained model at the sixth granularity level to make prediction and␣
→˓explanation. Note that the value for the level parameter starts from 0.
level_explain = 5
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = multi_granular_
→˓gfmm_clf.get_sample_explanation_granular_level(Xtest[sample_need_explain],␣
→˓Xtest[sample_need_explain], level_explain)

[22]: print("Predicted class for sample X = [%f, %f] is %d and real class is %d" %␣
→˓(Xtest[sample_need_explain, 0], Xtest[sample_need_explain, 1], y_pred_input_0,␣
→˓ytest[sample_need_explain]))

Predicted class for sample X = [0.752930, 0.385920] is 1 and real class is 2

210 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[23]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 1 has the maximum membership value = 0.989125
Class 2 has the maximum membership value = 0.915132
Class 1 has the representative hyperbox: V = [0.763805 0.369765] and W = [0.91185 0.
→˓48598]
Class 2 has the representative hyperbox: V = [0.563065 0.17003] and W = [0.6680625 0.
→˓65662]

Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use
parallel coordinates

Using rectangles to show explanations

[24]: multi_granular_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_
→˓need_explain], min_points_classes, max_points_classes, y_pred_input_0, "2D")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Using parallel coordinates to show explanations. This method can be used for any number of di-
mensions

[25]: # Create a parallel coordinates graph
multi_granular_gfmm_clf.show_sample_explanation(Xtest[sample_need_explain], Xtest[sample_
→˓need_explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_
→˓cord/multi_resolution_gfmm_lv6_par_cord.html")

[26]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/multi_
→˓resolution_gfmm_lv6_par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/multi_
→˓resolution_gfmm_lv6_par_cord.html', width=820, height=520)

[26]: <IPython.lib.display.IFrame at 0x1e8371cf588>

2.8. Tutorials 211

hyperbox-brain, Release 0.1.1

2.8.4 Ensemble learners

Decision-level Bagging of Hyperbox-based Models

This example shows how to use a Bagging classifier of base hyperbox-based models trained on a full set of features
and a subset of samples.

[1]: import warnings
warnings.filterwarnings('ignore')
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.decision_comb_bagging import␣
→˓DecisionCombinationBagging
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

Load dataset.

This example will use the breast cancer dataset available in sklearn to demonstrate how to use this ensemble classifier.

[2]: from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: # Normailise data into the range of [0, 1] as hyperbox-based models only work in the␣
→˓unit cube
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

[5]: # Split data into training, validation and testing sets
Xtr_val, X_test, ytr_val, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
Xtr, X_val, ytr, y_val = train_test_split(X, y, train_size=0.75, random_state=0)

This example will use the GFMM classifier with the original online learning algorithm as base learners. However, any
type of hyperbox-based learning algorithms in this library can also be used to train base learners.

1. Using random subsampling to generate training sets for various base learners

Training

[6]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = False # do not use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners

212 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[7]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[8]: dc_bagging_subsampling = DecisionCombinationBagging(base_estimator=base_estimator, n_
→˓estimators=n_estimators, max_samples=max_samples, bootstrap=bootstrap, class_
→˓balanced=class_balanced, n_jobs=n_jobs, random_state=0)

[9]: dc_bagging_subsampling.fit(Xtr, ytr)

[9]: DecisionCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

n_estimators=20, n_jobs=4, random_state=0)

[10]: print("Training time: %.3f (s)"%(dc_bagging_subsampling.elapsed_training_time))

Training time: 4.355 (s)

[11]: print('Total number of hyperboxes from all base learners = %d'%dc_bagging_subsampling.
→˓get_n_hyperboxes())

Total number of hyperboxes from all base learners = 3948

Prediction

[12]: y_pred = dc_bagging_subsampling.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 93.86%

Apply pruning for base learners

[13]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
dc_bagging_subsampling.simple_pruning_base_estimators(X_val, y_val, acc_threshold, keep_
→˓empty_boxes)

[13]: DecisionCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

n_estimators=20, n_jobs=4, random_state=0)

[14]: print('Total number of hyperboxes from all base learners after pruning = %d'%dc_bagging_
→˓subsampling.get_n_hyperboxes())

2.8. Tutorials 213

hyperbox-brain, Release 0.1.1

Total number of hyperboxes from all base learners after pruning = 2195

Prediction after doing a pruning procedure

[15]: y_pred_2 = dc_bagging_subsampling.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 95.61%

2. Using random undersampling to generate class-balanced training sets for various base learners

Training

[16]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = True # use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners

[17]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[18]: dc_bagging_class_balanced = DecisionCombinationBagging(base_estimator=base_estimator, n_
→˓estimators=n_estimators, max_samples=max_samples, bootstrap=bootstrap, class_
→˓balanced=class_balanced, n_jobs=n_jobs, random_state=0)

[19]: dc_bagging_class_balanced.fit(Xtr, ytr)

[19]: DecisionCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True, n_estimators=20, n_jobs=4,
random_state=0)

[20]: print("Training time: %.3f (s)"%(dc_bagging_class_balanced.elapsed_training_time))

Training time: 0.271 (s)

[21]: print('Total number of hyperboxes from all base learners = %d'%dc_bagging_class_balanced.
→˓get_n_hyperboxes())

Total number of hyperboxes from all base learners = 4010

214 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction

[22]: y_pred = dc_bagging_class_balanced.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 92.11%

Apply pruning for base learners

[23]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
dc_bagging_class_balanced.simple_pruning_base_estimators(X_val, y_val, acc_threshold,␣
→˓keep_empty_boxes)

[23]: DecisionCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True, n_estimators=20, n_jobs=4,
random_state=0)

[24]: print('Total number of hyperboxes from all base learners after pruning = %d'%dc_bagging_
→˓class_balanced.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 2738

Prediction after doing a pruning procedure

[25]: y_pred_2 = dc_bagging_class_balanced.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 94.74%

Decision-level Bagging of Hyperbox-based Models with Hyper-parameter Optimisation

This example shows how to use a Bagging classifier of base hyperbox-based models trained on a full set of features and
a subset of samples, in which each base learner is trained by random search-based hyper-parameter tuning and k-fold
cross-validation.

While the original bagging model in the class DecisionCombinationBagging uses the same base learners with the same
hyperparameters, the cross-validation bagging model in the class DecisionCombinationCrossValBagging allows each
base learner to use specific hyperparameters depending on the training data by performing random research to find the
best combination of hyperparameters for each base learner.

[1]: import warnings
warnings.filterwarnings('ignore')
import numpy as np

(continues on next page)

2.8. Tutorials 215

hyperbox-brain, Release 0.1.1

(continued from previous page)

from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging import␣
→˓DecisionCombinationCrossValBagging
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

Load dataset.

This example will use the breast cancer dataset available in sklearn to demonstrate how to use this ensemble classifier.

[2]: from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: # Normailise data into the range of [0, 1] as hyperbox-based models only work in the␣
→˓unit cube
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

[5]: # Split data into training, validation and testing sets
Xtr_val, X_test, ytr_val, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
Xtr, X_val, ytr, y_val = train_test_split(X, y, train_size=0.75, random_state=0)

This example will use the GFMM classifier with the original online learning algorithm as base learners. However, any
type of hyperbox-based learning algorithms in this library can also be used to train base learners.

1. Using random subsampling to generate training sets for various base learners

Training

[6]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = False # do not use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣
→˓combination of hyperparameters
k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

[7]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm
base_estimator = OnlineGFMM()

216 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[8]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

[9]: dc_cv_bagging_subsampling = DecisionCombinationCrossValBagging(base_estimator=base_
→˓estimator, base_estimator_params=base_estimator_params, n_estimators=n_estimators, max_
→˓samples=max_samples, bootstrap=bootstrap, class_balanced=class_balanced, n_iter=n_iter,
→˓ k_fold=k_fold, n_jobs=n_jobs, random_state=0)
dc_cv_bagging_subsampling.fit(Xtr, ytr)

[9]: DecisionCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[10]: print("Training time: %.3f (s)"%(dc_cv_bagging_subsampling.elapsed_training_time))

Training time: 46.519 (s)

[11]: print('Total number of hyperboxes from all base learners = %d'%dc_cv_bagging_subsampling.
→˓get_n_hyperboxes())

Total number of hyperboxes from all base learners = 1168

Prediction

[12]: y_pred = dc_cv_bagging_subsampling.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 94.74%

Apply pruning for base learners

[13]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
dc_cv_bagging_subsampling.simple_pruning_base_estimators(X_val, y_val, acc_threshold,␣
→˓keep_empty_boxes)

[13]: DecisionCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

(continues on next page)

2.8. Tutorials 217

hyperbox-brain, Release 0.1.1

(continued from previous page)

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[14]: print('Total number of hyperboxes from all base learners after pruning = %d'%dc_cv_
→˓bagging_subsampling.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 756

Prediction after doing a pruning procedure

[15]: y_pred_2 = dc_cv_bagging_subsampling.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 96.49%

2. Using random undersampling to generate class-balanced training sets for various base learners

Training

[16]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = True # use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣
→˓combination of hyperparameters
k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

[17]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM()

[18]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

218 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[19]: dc_cv_bagging_class_balanced = DecisionCombinationCrossValBagging(base_estimator=base_
→˓estimator, base_estimator_params=base_estimator_params, n_estimators=n_estimators, max_
→˓samples=max_samples, bootstrap=bootstrap, class_balanced=class_balanced, n_iter=n_iter,
→˓ k_fold=k_fold, n_jobs=n_jobs, random_state=0)
dc_cv_bagging_class_balanced.fit(Xtr, ytr)

[19]: DecisionCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True, n_estimators=20,
n_iter=20, n_jobs=4, random_state=0)

[20]: print("Training time: %.3f (s)"%(dc_cv_bagging_class_balanced.elapsed_training_time))

Training time: 32.595 (s)

[21]: print('Total number of hyperboxes from all base learners = %d'%dc_cv_bagging_class_
→˓balanced.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 1407

Prediction

[22]: y_pred = dc_cv_bagging_class_balanced.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 94.74%

Apply pruning for base learners

[23]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
dc_cv_bagging_class_balanced.simple_pruning_base_estimators(X_val, y_val, acc_threshold,␣
→˓keep_empty_boxes)

[23]: DecisionCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
(continues on next page)

2.8. Tutorials 219

hyperbox-brain, Release 0.1.1

(continued from previous page)

'theta_min': [1]},
class_balanced=True, n_estimators=20,
n_iter=20, n_jobs=4, random_state=0)

[24]: print('Total number of hyperboxes from all base learners after pruning = %d'%dc_cv_
→˓bagging_class_balanced.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 719

Prediction after doing a pruning procedure

[25]: y_pred_2 = dc_cv_bagging_class_balanced.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 95.61%

Model-level Bagging of Hyperbox-based Models

This example shows how to use a Bagging classifier with a combination at the model level to generate a single model
from many base learners, in which each base hyperbox-based model is trained on a full set of features and a subset of
samples.

[1]: import warnings
warnings.filterwarnings('ignore')
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.model_comb_bagging import␣
→˓ModelCombinationBagging
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM
from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM

Load dataset.

This example will use the breast cancer dataset available in sklearn to demonstrate how to use this ensemble classifier.

[2]: from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: # Normailise data into the range of [0, 1] as hyperbox-based models only work in the␣
→˓unit cube
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

220 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[5]: # Split data into training, validation and testing sets
Xtr_val, X_test, ytr_val, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
Xtr, X_val, ytr, y_val = train_test_split(X, y, train_size=0.75, random_state=0)

This example will use the GFMM classifier with the original online learning algorithm as base learners. However,
any type of hyperbox-based learning algorithms in this library can also be used to train base learners.

1. Using random subsampling to generate training sets for various base learners

a. Training without pruning for base learners

[6]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = False # do not use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners

[7]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[8]: # Init a hyperbox-based model used to aggregate the resulting hyperboxes from all base␣
→˓learners
Using the accelerated agglomerative learning algorithm for the GFMM model to do this␣
→˓task
model_level_estimator = AccelAgglomerativeLearningGFMM(theta=0.1, min_simil=0, simil_
→˓measure='long')

[9]: model_comb_bagging_subsampling = ModelCombinationBagging(base_estimator=base_estimator,␣
→˓model_level_estimator=model_level_estimator, n_estimators=n_estimators, max_
→˓samples=max_samples, bootstrap=bootstrap, class_balanced=class_balanced, n_jobs=n_jobs,
→˓ random_state=0)
model_comb_bagging_subsampling.fit(Xtr, ytr)

[9]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,
simil_

→˓measure='long',
theta=0.1),

n_estimators=20, n_jobs=4, random_state=0)

[10]: print("Training time: %.3f (s)"%(model_comb_bagging_subsampling.elapsed_training_time))

Training time: 16.647 (s)

2.8. Tutorials 221

hyperbox-brain, Release 0.1.1

[11]: print('Total number of hyperboxes in all base learners = %d'%model_comb_bagging_
→˓subsampling.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 3948

[12]: print('Number of hyperboxes in the combined model = %d'%model_comb_bagging_subsampling.
→˓get_n_hyperboxes_comb_model())

Number of hyperboxes in the combined model = 401

Prediction

Using majority voting from predicted results of all base learners

[13]: y_pred_voting = model_comb_bagging_subsampling.predict_voting(X_test)

[14]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 93.86%

Using the final combined single model to make prediction

[16]: y_pred = model_comb_bagging_subsampling.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 92.98%

Apply pruning for the final combined model

[17]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_bagging_subsampling.simple_pruning(X_val, y_val, acc_threshold, keep_empty_
→˓boxes)

[17]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,
simil_

→˓measure='long',
theta=0.1),

n_estimators=20, n_jobs=4, random_state=0)

222 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[18]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓bagging_subsampling.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 393

Prediction after doing a pruning procedure for the combined single model

[20]: y_pred_2 = model_comb_bagging_subsampling.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 94.74%

b. Training with pruning for base learners

[21]: model_comb_bagging_subsampling_base_learner_pruning = ModelCombinationBagging(base_
→˓estimator=base_estimator, model_level_estimator=model_level_estimator, n_estimators=n_
→˓estimators, max_samples=max_samples, bootstrap=bootstrap, class_balanced=class_
→˓balanced, n_jobs=n_jobs, random_state=0)
model_comb_bagging_subsampling_base_learner_pruning.fit(Xtr, ytr, is_pruning_base_
→˓learners=True, X_val=X_val, y_val=y_val, acc_threshold=acc_threshold, keep_empty_
→˓boxes=keep_empty_boxes)

[21]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,
simil_

→˓measure='long',
theta=0.1),

n_estimators=20, n_jobs=4, random_state=0)

[22]: print("Training time: %.3f (s)"%(model_comb_bagging_subsampling_base_learner_pruning.
→˓elapsed_training_time))

Training time: 8.254 (s)

[23]: print('Total number of hyperboxes in all base learners = %d'%model_comb_bagging_
→˓subsampling_base_learner_pruning.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 2195

[24]: print('Number of hyperboxes in the combined model = %d'%model_comb_bagging_subsampling_
→˓base_learner_pruning.get_n_hyperboxes_comb_model())

Number of hyperboxes in the combined model = 388

2.8. Tutorials 223

hyperbox-brain, Release 0.1.1

Prediction

Using majority voting from predicted results of all base learners

[25]: y_pred_voting = model_comb_bagging_subsampling_base_learner_pruning.predict_voting(X_
→˓test)

[26]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 95.61%

Using the final combined single model to make prediction

[27]: y_pred = model_comb_bagging_subsampling_base_learner_pruning.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 94.74%

Apply pruning for the final combined model

[28]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_bagging_subsampling_base_learner_pruning.simple_pruning(X_val, y_val, acc_
→˓threshold, keep_empty_boxes)

[28]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,
simil_

→˓measure='long',
theta=0.1),

n_estimators=20, n_jobs=4, random_state=0)

[29]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓bagging_subsampling_base_learner_pruning.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 383

224 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction after doing a pruning procedure for the combined single model

[30]: y_pred_2 = model_comb_bagging_subsampling_base_learner_pruning.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 94.74%

2. Using random undersampling to generate class-balanced training sets for various base learners

a. Training without pruning for base learners

[31]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = True # use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners

[32]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[33]: # Init a hyperbox-based model used to aggregate the resulting hyperboxes from all base␣
→˓learners
Using the accelerated agglomerative learning algorithm for the GFMM model to do this␣
→˓task
model_level_estimator = AccelAgglomerativeLearningGFMM(theta=0.1, min_simil=0, simil_
→˓measure='long')

[34]: model_comb_bagging_class_balanced = ModelCombinationBagging(base_estimator=base_
→˓estimator, model_level_estimator=model_level_estimator, n_estimators=n_estimators, max_
→˓samples=max_samples, bootstrap=bootstrap, class_balanced=class_balanced, n_jobs=n_jobs,
→˓ random_state=0)
model_comb_bagging_class_balanced.fit(Xtr, ytr)

[34]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,

simil_
→˓measure='long',

theta=0.1),
n_estimators=20, n_jobs=4, random_state=0)

[35]: print("Training time: %.3f (s)"%(model_comb_bagging_class_balanced.elapsed_training_
→˓time))

2.8. Tutorials 225

hyperbox-brain, Release 0.1.1

Training time: 16.955 (s)

[36]: print('Total number of hyperboxes in all base learners = %d'%model_comb_bagging_class_
→˓balanced.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 4010

[37]: print('Number of hyperboxes in the combined model = %d'%model_comb_bagging_class_
→˓balanced.get_n_hyperboxes_comb_model())

Number of hyperboxes in the combined model = 400

Prediction

Using majority voting from predicted results of all base learners

[38]: y_pred_voting = model_comb_bagging_class_balanced.predict_voting(X_test)

[39]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 92.11%

Using the final combined single model to make prediction

[40]: y_pred = model_comb_bagging_class_balanced.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 92.98%

Apply pruning for the final combined model

[41]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_bagging_class_balanced.simple_pruning(X_val, y_val, acc_threshold, keep_empty_
→˓boxes)

[41]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,

simil_
→˓measure='long',

(continues on next page)

226 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

theta=0.1),
n_estimators=20, n_jobs=4, random_state=0)

[42]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓bagging_class_balanced.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 392

Prediction after doing a pruning procedure for the combined single model

[43]: y_pred_2 = model_comb_bagging_class_balanced.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 94.74%

b. Training with pruning for base learners

[44]: model_comb_bagging_class_balanced_base_learner_pruning = ModelCombinationBagging(base_
→˓estimator=base_estimator, model_level_estimator=model_level_estimator, n_estimators=n_
→˓estimators, max_samples=max_samples, bootstrap=bootstrap, class_balanced=class_
→˓balanced, n_jobs=n_jobs, random_state=0)
model_comb_bagging_class_balanced_base_learner_pruning.fit(Xtr, ytr, is_pruning_base_
→˓learners=True, X_val=X_val, y_val=y_val, acc_threshold=acc_threshold, keep_empty_
→˓boxes=keep_empty_boxes)

[44]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,

simil_
→˓measure='long',

theta=0.1),
n_estimators=20, n_jobs=4, random_state=0)

[45]: print("Training time: %.3f (s)"%(model_comb_bagging_class_balanced_base_learner_pruning.
→˓elapsed_training_time))

Training time: 7.264 (s)

[46]: print('Total number of hyperboxes in all base learners = %d'%model_comb_bagging_class_
→˓balanced_base_learner_pruning.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 2738

[47]: print('Number of hyperboxes in the combined model = %d'%model_comb_bagging_class_
→˓balanced_base_learner_pruning.get_n_hyperboxes_comb_model())

2.8. Tutorials 227

hyperbox-brain, Release 0.1.1

Number of hyperboxes in the combined model = 395

Prediction

Using majority voting from predicted results of all base learners

[48]: y_pred_voting = model_comb_bagging_class_balanced_base_learner_pruning.predict_voting(X_
→˓test)

[49]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 94.74%

Using the final combined single model to make prediction

[50]: y_pred = model_comb_bagging_class_balanced_base_learner_pruning.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 94.74%

Apply pruning for the final combined model

[51]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_bagging_class_balanced_base_learner_pruning.simple_pruning(X_val, y_val, acc_
→˓threshold, keep_empty_boxes)

[51]: ModelCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_simil=0,

simil_
→˓measure='long',

theta=0.1),
n_estimators=20, n_jobs=4, random_state=0)

[52]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓bagging_class_balanced_base_learner_pruning.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 100

228 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction after doing a pruning procedure for the combined single model

[53]: y_pred_2 = model_comb_bagging_class_balanced_base_learner_pruning.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 94.74%

Model-level Bagging of Hyperbox-based Learners with Hyper-parameter Optimisation

This example shows how to use a Bagging classifier with a combination at the model level to generate a single model
from many base learners, in which each base learner is trained by random search-based hyper-parameter tuning and
k-fold cross-validation.

While the original model-level combination bagging classifier in the class ModelCombinationBagging uses the same
base learners with the same hyperparameters, the cross-validation model-level combination bagging classifier in the
class ModelCombinationCrossValBagging allows each base learner to use specific hyperparameters depending on the
training data by performing random research to find the best combination of hyperparameters for each base learner.

[1]: import warnings
warnings.filterwarnings('ignore')
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging import␣
→˓ModelCombinationCrossValBagging
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM
from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM

Load dataset. This example will use the breast cancer dataset available in sklearn to demonstrate
how to use this ensemble classifier.

[2]: from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: # Normailise data into the range of [0, 1] as hyperbox-based models only work in the␣
→˓unit cube
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

[5]: # Split data into training, validation and testing sets
Xtr_val, X_test, ytr_val, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
Xtr, X_val, ytr, y_val = train_test_split(X, y, train_size=0.75, random_state=0)

This example will use the GFMM classifier with the original online learning algorithm as base learners. However,
any type of hyperbox-based learning algorithms in this library can also be used to train base learners.

2.8. Tutorials 229

hyperbox-brain, Release 0.1.1

1. Using random subsampling to generate training sets for various base learners

a. Training without pruning for base learners

[6]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = False # do not use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣
→˓combination of hyperparameters
k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

[7]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm
base_estimator = OnlineGFMM()

[8]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

[9]: # Init a hyperbox-based model used to aggregate the resulting hyperboxes from all base␣
→˓learners
Using the accelerated agglomerative learning algorithm for the GFMM model to do this␣
→˓task
model_level_estimator = AccelAgglomerativeLearningGFMM(theta=0.1, min_simil=0, simil_
→˓measure='long')

[10]: model_comb_cv_bagging_subsampling = ModelCombinationCrossValBagging(base_estimator=base_
→˓estimator, base_estimator_params=base_estimator_params, model_level_estimator=model_
→˓level_estimator, n_estimators=n_estimators, max_samples=max_samples,␣
→˓bootstrap=bootstrap, class_balanced=class_balanced, n_iter=n_iter, k_fold=k_fold, n_
→˓jobs=n_jobs, random_state=0)
model_comb_cv_bagging_subsampling.fit(Xtr, ytr)

[10]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

model_level_estimator=AccelAgglomerativeLearningGFMM(min_
→˓simil=0,

␣
→˓simil_measure='long',

␣
(continues on next page)

230 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓theta=0.1),
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[11]: print("Training time: %.3f (s)"%(model_comb_cv_bagging_subsampling.elapsed_training_
→˓time))

Training time: 44.155 (s)

[12]: print('Total number of hyperboxes in all base learners = %d'%model_comb_cv_bagging_
→˓subsampling.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 1168

[13]: print('Number of hyperboxes in the combined model = %d'%model_comb_cv_bagging_
→˓subsampling.get_n_hyperboxes_comb_model())

Number of hyperboxes in the combined model = 779

Prediction

Using majority voting from predicted results of all base learners

[14]: y_pred_voting = model_comb_cv_bagging_subsampling.predict_voting(X_test)

[15]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 94.74%

Using the final combined single model to make prediction

[16]: y_pred = model_comb_cv_bagging_subsampling.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 88.60%

Apply pruning for the final combined model

[17]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_cv_bagging_subsampling.simple_pruning(X_val, y_val, acc_threshold, keep_empty_
→˓boxes)

2.8. Tutorials 231

hyperbox-brain, Release 0.1.1

[17]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

model_level_estimator=AccelAgglomerativeLearningGFMM(min_
→˓simil=0,

␣
→˓simil_measure='long',

␣
→˓theta=0.1),

n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[18]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓cv_bagging_subsampling.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 36

Prediction after doing a pruning procedure for the combined single model

[19]: y_pred_2 = model_comb_cv_bagging_subsampling.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 88.60%

b. Training with pruning for base learners

[20]: model_comb_cv_bagging_subsampling_base_learner_pruning =␣
→˓ModelCombinationCrossValBagging(base_estimator=base_estimator, base_estimator_
→˓params=base_estimator_params, model_level_estimator=model_level_estimator, n_
→˓estimators=n_estimators, max_samples=max_samples, bootstrap=bootstrap, class_
→˓balanced=class_balanced, n_iter=n_iter, k_fold=k_fold, n_jobs=n_jobs, random_state=0)
model_comb_cv_bagging_subsampling_base_learner_pruning.fit(Xtr, ytr, is_pruning_base_
→˓learners=True, X_val=X_val, y_val=y_val, acc_threshold=acc_threshold, keep_empty_
→˓boxes=keep_empty_boxes)

[20]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
(continues on next page)

232 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

'theta_min': [1]},
model_level_estimator=AccelAgglomerativeLearningGFMM(min_

→˓simil=0,
␣

→˓simil_measure='long',
␣

→˓theta=0.1),
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[21]: print("Training time: %.3f (s)"%(model_comb_cv_bagging_subsampling_base_learner_pruning.
→˓elapsed_training_time))

Training time: 44.437 (s)

[22]: print('Total number of hyperboxes in all base learners = %d'%model_comb_cv_bagging_
→˓subsampling_base_learner_pruning.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 756

[23]: print('Number of hyperboxes in the combined model = %d'%model_comb_cv_bagging_
→˓subsampling_base_learner_pruning.get_n_hyperboxes_comb_model())

Number of hyperboxes in the combined model = 613

Prediction

Using majority voting from predicted results of all base learners

[24]: y_pred_voting = model_comb_cv_bagging_subsampling_base_learner_pruning.predict_voting(X_
→˓test)

[25]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 96.49%

Using the final combined single model to make prediction

[26]: y_pred = model_comb_cv_bagging_subsampling_base_learner_pruning.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 88.60%

2.8. Tutorials 233

hyperbox-brain, Release 0.1.1

Apply pruning for the final combined model

[27]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_cv_bagging_subsampling_base_learner_pruning.simple_pruning(X_val, y_val, acc_
→˓threshold, keep_empty_boxes)

[27]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

model_level_estimator=AccelAgglomerativeLearningGFMM(min_
→˓simil=0,

␣
→˓simil_measure='long',

␣
→˓theta=0.1),

n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[28]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓cv_bagging_subsampling_base_learner_pruning.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 36

Prediction after doing a pruning procedure for the combined single model

[29]: y_pred_2 = model_comb_cv_bagging_subsampling_base_learner_pruning.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 88.60%

2. Using random undersampling to generate class-balanced training sets for various base learners

a. Training without pruning for base learners

[30]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = True # use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣

(continues on next page)

234 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓combination of hyperparameters
k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

[31]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm
base_estimator = OnlineGFMM()

[32]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

[33]: # Init a hyperbox-based model used to aggregate the resulting hyperboxes from all base␣
→˓learners
Using the accelerated agglomerative learning algorithm for the GFMM model to do this␣
→˓task
model_level_estimator = AccelAgglomerativeLearningGFMM(theta=0.1, min_simil=0, simil_
→˓measure='long')

[34]: model_comb_cv_bagging_class_balanced = ModelCombinationCrossValBagging(base_
→˓estimator=base_estimator, base_estimator_params=base_estimator_params, model_level_
→˓estimator=model_level_estimator, n_estimators=n_estimators, max_samples=max_samples,␣
→˓bootstrap=bootstrap, class_balanced=class_balanced, n_iter=n_iter, k_fold=k_fold, n_
→˓jobs=n_jobs, random_state=0)
model_comb_cv_bagging_class_balanced.fit(Xtr, ytr)

[34]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_

→˓simil=0,
␣

→˓simil_measure='long',
␣

→˓theta=0.1),
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[35]: print("Training time: %.3f (s)"%(model_comb_cv_bagging_class_balanced.elapsed_training_
→˓time))

Training time: 36.885 (s)

2.8. Tutorials 235

hyperbox-brain, Release 0.1.1

[36]: print('Total number of hyperboxes in all base learners = %d'%model_comb_cv_bagging_class_
→˓balanced.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 1407

[37]: print('Number of hyperboxes in the combined model = %d'%model_comb_cv_bagging_class_
→˓balanced.get_n_hyperboxes_comb_model())

Number of hyperboxes in the combined model = 812

Prediction

Using majority voting from predicted results of all base learners

[38]: y_pred_voting = model_comb_cv_bagging_class_balanced.predict_voting(X_test)

[39]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 94.74%

Using the final combined single model to make prediction

[40]: y_pred = model_comb_cv_bagging_class_balanced.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 89.47%

Apply pruning for the final combined model

[41]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_cv_bagging_class_balanced.simple_pruning(X_val, y_val, acc_threshold, keep_
→˓empty_boxes)

[41]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_

(continues on next page)

236 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓simil=0,
␣

→˓simil_measure='long',
␣

→˓theta=0.1),
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[42]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓cv_bagging_class_balanced.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 42

Prediction after doing a pruning procedure for the combined single model

[43]: y_pred_2 = model_comb_cv_bagging_class_balanced.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 90.35%

b. Training with pruning for base learners

[45]: model_comb_cv_bagging_class_balanced_base_learner_pruning =␣
→˓ModelCombinationCrossValBagging(base_estimator=base_estimator, base_estimator_
→˓params=base_estimator_params, model_level_estimator=model_level_estimator, n_
→˓estimators=n_estimators, max_samples=max_samples, bootstrap=bootstrap, class_
→˓balanced=class_balanced, n_iter=n_iter, k_fold=k_fold, n_jobs=n_jobs, random_state=0)
model_comb_cv_bagging_class_balanced_base_learner_pruning.fit(Xtr, ytr, is_pruning_base_
→˓learners=True, X_val=X_val, y_val=y_val, acc_threshold=acc_threshold, keep_empty_
→˓boxes=keep_empty_boxes)

[45]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_

→˓simil=0,
␣

→˓simil_measure='long',
␣

→˓theta=0.1),
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

2.8. Tutorials 237

hyperbox-brain, Release 0.1.1

[46]: print("Training time: %.3f (s)"%(model_comb_cv_bagging_class_balanced_base_learner_
→˓pruning.elapsed_training_time))

Training time: 31.609 (s)

[47]: print('Total number of hyperboxes in all base learners = %d'%model_comb_cv_bagging_class_
→˓balanced_base_learner_pruning.get_n_hyperboxes())

Total number of hyperboxes in all base learners = 719

[48]: print('Number of hyperboxes in the combined model = %d'%model_comb_cv_bagging_class_
→˓balanced_base_learner_pruning.get_n_hyperboxes_comb_model())

Number of hyperboxes in the combined model = 538

Prediction

Using majority voting from predicted results of all base learners

[50]: y_pred_voting = model_comb_cv_bagging_class_balanced_base_learner_pruning.predict_
→˓voting(X_test)

[51]: acc_voting = accuracy_score(y_test, y_pred_voting)
print(f'Testing accuracy using voting of decisions from base learners = {acc_voting *␣
→˓100 : .2f}%')

Testing accuracy using voting of decisions from base learners = 95.61%

Using the final combined single model to make prediction

[52]: y_pred = model_comb_cv_bagging_class_balanced_base_learner_pruning.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy of the combined model = {acc * 100: .2f}%')

Testing accuracy of the combined model = 89.47%

Apply pruning for the final combined model

[53]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
model_comb_cv_bagging_class_balanced_base_learner_pruning.simple_pruning(X_val, y_val,␣
→˓acc_threshold, keep_empty_boxes)

[53]: ModelCombinationCrossValBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2, 4,
8, 16],

(continues on next page)

238 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

'theta': array([0.05, 0.1 , 0.15,␣
→˓0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True,
model_level_estimator=AccelAgglomerativeLearningGFMM(min_

→˓simil=0,
␣

→˓simil_measure='long',
␣

→˓theta=0.1),
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[54]: print('Number of hyperboxes of the combined single model after pruning = %d'%model_comb_
→˓cv_bagging_class_balanced_base_learner_pruning.get_n_hyperboxes_comb_model())

Number of hyperboxes of the combined single model after pruning = 42

Prediction after doing a pruning procedure for the combined single model

[55]: y_pred_2 = model_comb_cv_bagging_class_balanced_base_learner_pruning.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy after pruning the final model = {acc_pruned * 100: .2f}%')

Testing accuracy after pruning the final model = 90.35%

Random Hyperboxes

This example shows how to use a random hyperboxes classifier, in which each base hyperbox-based model is trained
on a subset of features and a subset of samples.

[1]: import warnings
warnings.filterwarnings('ignore')
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.random_hyperboxes import␣
→˓RandomHyperboxesClassifier
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

2.8. Tutorials 239

hyperbox-brain, Release 0.1.1

Load dataset.

This example will use the breast cancer dataset available in sklearn to demonstrate how to use this ensemble classifier.

[2]: from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: # Normailise data into the range of [0, 1] as hyperbox-based models only work in the␣
→˓unit cube
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

[5]: # Split data into training, validation and testing sets
Xtr_val, X_test, ytr_val, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
Xtr, X_val, ytr, y_val = train_test_split(X, y, train_size=0.75, random_state=0)

This example will use the GFMM classifier with the original online learning algorithm as base learners. However,
any type of hyperbox-based learning algorithms in this library can also be used to train base learners.

1. Using random subsampling to generate training sets for various base learners

a. The number of features used in each base learner is different and is bounded by a maximum
number of features

Training

[6]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features
class_balanced = False # do not use the class-balanced sampling mode
feature_balanced = False # use different numbers of features for base learners
n_jobs = 4 # number of processes is used to build base learners

[7]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[8]: rh_subsampling_diff_num_features_clf = RandomHyperboxesClassifier(base_estimator=base_
→˓estimator, n_estimators=n_estimators, max_samples=max_samples, max_features=max_
→˓features, class_balanced=class_balanced, feature_balanced=feature_balanced, n_jobs=n_
→˓jobs, random_state=0)
rh_subsampling_diff_num_features_clf.fit(Xtr, ytr)

240 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[8]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

max_features=0.5, n_estimators=20, n_jobs=4,
random_state=0)

[9]: print("Training time: %.3f (s)"%(rh_subsampling_diff_num_features_clf.elapsed_training_
→˓time))

Training time: 4.155 (s)

[10]: print('Total number of hyperboxes from all base learners = %d'%rh_subsampling_diff_num_
→˓features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 2212

Prediction

[11]: y_pred = rh_subsampling_diff_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 92.11%

Apply pruning for base learners

[12]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
rh_subsampling_diff_num_features_clf.simple_pruning_base_estimators(X_val, y_val, acc_
→˓threshold, keep_empty_boxes)

[12]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

max_features=0.5, n_estimators=20, n_jobs=4,
random_state=0)

[13]: print('Total number of hyperboxes from all base learners after pruning = %d'%rh_
→˓subsampling_diff_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 1219

2.8. Tutorials 241

hyperbox-brain, Release 0.1.1

Prediction after doing a pruning procedure

[14]: y_pred_2 = rh_subsampling_diff_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 95.61%

b. The number of features used in each base learner is the same and is equal to the given maximum
number of features

[15]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features
class_balanced = False # do not use the class-balanced sampling mode
use the same numbers of features for base learners and the number of used features is␣
→˓the given maximum number of features
feature_balanced = True
n_jobs = 4 # number of processes is used to build base learners

[16]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[17]: rh_subsampling_same_num_features_clf = RandomHyperboxesClassifier(base_estimator=base_
→˓estimator, n_estimators=n_estimators, max_samples=max_samples, max_features=max_
→˓features, class_balanced=class_balanced, feature_balanced=feature_balanced, n_jobs=n_
→˓jobs, random_state=0)
rh_subsampling_same_num_features_clf.fit(Xtr, ytr)

[17]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

feature_balanced=True, max_features=0.5,
n_estimators=20, n_jobs=4, random_state=0)

[18]: print("Training time: %.3f (s)"%(rh_subsampling_same_num_features_clf.elapsed_training_
→˓time))

Training time: 0.841 (s)

[19]: print('Total number of hyperboxes from all base learners = %d'%rh_subsampling_same_num_
→˓features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 3241

242 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction

[20]: y_pred = rh_subsampling_same_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 94.74%

Apply pruning for base learners

[21]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
rh_subsampling_same_num_features_clf.simple_pruning_base_estimators(X_val, y_val, acc_
→˓threshold, keep_empty_boxes)

[21]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

feature_balanced=True, max_features=0.5,
n_estimators=20, n_jobs=4, random_state=0)

Prediction after doing a pruning procedure

[22]: y_pred_2 = rh_subsampling_same_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 96.49%

2. Using random undersampling to generate class-balanced training sets for various base learners

a. The number of features used in each base learner is different and is bounded by a maximum
number of features

Training

[23]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features
class_balanced = True # use the class-balanced sampling mode
feature_balanced = False # use different numbers of features for base learners
n_jobs = 4 # number of processes is used to build base learners

2.8. Tutorials 243

hyperbox-brain, Release 0.1.1

[24]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[25]: rh_class_balanced_diff_num_features_clf = RandomHyperboxesClassifier(base_estimator=base_
→˓estimator, n_estimators=n_estimators, max_samples=max_samples, max_features=max_
→˓features, class_balanced=class_balanced, feature_balanced=feature_balanced, n_jobs=n_
→˓jobs, random_state=0)
rh_class_balanced_diff_num_features_clf.fit(Xtr, ytr)

[25]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True, max_features=0.5,
n_estimators=20, n_jobs=4, random_state=0)

[26]: print("Training time: %.3f (s)"%(rh_class_balanced_diff_num_features_clf.elapsed_
→˓training_time))

Training time: 4.061 (s)

[27]: print('Total number of hyperboxes from all base learners = %d'%rh_class_balanced_diff_
→˓num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 2288

Prediction

[28]: y_pred = rh_class_balanced_diff_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 91.23%

Apply pruning for base learners

[29]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
rh_class_balanced_diff_num_features_clf.simple_pruning_base_estimators(X_val, y_val, acc_
→˓threshold, keep_empty_boxes)

[29]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True, max_features=0.5,
n_estimators=20, n_jobs=4, random_state=0)

244 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[30]: print('Total number of hyperboxes from all base learners after pruning = %d'%rh_class_
→˓balanced_diff_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 1546

Prediction after doing a pruning procedure

[31]: y_pred_2 = rh_class_balanced_diff_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 97.37%

b. The number of features used in each base learner is the same and is equal to the given maximum
number of features

[32]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features
class_balanced = True # use the class-balanced sampling mode
use the same numbers of features for base learners and the number of used features is␣
→˓the given maximum number of features
feature_balanced = True
n_jobs = 4 # number of processes is used to build base learners

[33]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=0.1)

[34]: rh_class_balanced_same_num_features_clf = RandomHyperboxesClassifier(base_estimator=base_
→˓estimator, n_estimators=n_estimators, max_samples=max_samples, max_features=max_
→˓features, class_balanced=class_balanced, feature_balanced=feature_balanced, n_jobs=n_
→˓jobs, random_state=0)
rh_class_balanced_same_num_features_clf.fit(Xtr, ytr)

[34]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True, feature_balanced=True,
max_features=0.5, n_estimators=20, n_jobs=4,
random_state=0)

[35]: print("Training time: %.3f (s)"%(rh_class_balanced_same_num_features_clf.elapsed_
→˓training_time))

Training time: 0.474 (s)

2.8. Tutorials 245

hyperbox-brain, Release 0.1.1

[36]: print('Total number of hyperboxes from all base learners = %d'%rh_class_balanced_same_
→˓num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 3356

Prediction

[37]: y_pred = rh_class_balanced_same_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 91.23%

Apply pruning for base learners

[38]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
rh_class_balanced_same_num_features_clf.simple_pruning_base_estimators(X_val, y_val, acc_
→˓threshold, keep_empty_boxes)

[38]: RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
theta=0.1),

class_balanced=True, feature_balanced=True,
max_features=0.5, n_estimators=20, n_jobs=4,
random_state=0)

Prediction after doing a pruning procedure

[39]: y_pred_2 = rh_class_balanced_same_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 96.49%

Random Hyperboxes with Hyper-parameter Optimisation for Base Learners

This example shows how to use a random hyperboxes classifier, in which each base hyperbox-based model is trained
on a subset of features and a subset of samples using random search-based hyper-parameter tuning and k-fold cross-
validation.

While the original random hyperboxes model in the class RandomHyperboxesClassifier uses the same base learners
with the same hyperparameters, the cross-validation random hyperboxes model in the class CrossValRandomHyper-
boxesClassifier allows each base learner to use specific hyperparameters depending on its training data by performing
random research to find the best combination of hyperparameters for each base learner.

246 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[1]: import warnings
warnings.filterwarnings('ignore')
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes import␣
→˓CrossValRandomHyperboxesClassifier
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

Load dataset.

This example will use the breast cancer dataset available in sklearn to demonstrate how to use this ensemble classifier.

[2]: from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: # Normailise data into the range of [0, 1] as hyperbox-based models only work in the␣
→˓unit cube
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

[5]: # Split data into training, validation and testing sets
Xtr_val, X_test, ytr_val, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
Xtr, X_val, ytr, y_val = train_test_split(X, y, train_size=0.75, random_state=0)

This example will use the GFMM classifier with the original online learning algorithm as base learners. However,
any type of hyperbox-based learning algorithms in this library can also be used to train base learners.

1. Using random subsampling to generate training sets for various base learners

a. The number of features used in each base learner is different and is bounded by a maximum
number of features

Training

[6]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features
class_balanced = False # do not use the class-balanced sampling mode
feature_balanced = False # use different numbers of features for base learners
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣
→˓combination of hyperparameters

(continues on next page)

2.8. Tutorials 247

hyperbox-brain, Release 0.1.1

(continued from previous page)

k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

[7]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm
base_estimator = OnlineGFMM()

[8]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

[9]: cross_val_rh_subsampling_diff_num_features_clf = CrossValRandomHyperboxesClassifier(base_
→˓estimator=base_estimator, base_estimator_params=base_estimator_params, n_estimators=n_
→˓estimators, max_samples=max_samples, max_features=max_features, class_balanced=class_
→˓balanced, feature_balanced=feature_balanced, n_iter=n_iter, k_fold=k_fold, n_jobs=n_
→˓jobs, random_state=0)
cross_val_rh_subsampling_diff_num_features_clf.fit(Xtr, ytr)

[9]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

max_features=0.5, n_estimators=20, n_iter=20,
n_jobs=4, random_state=0)

[10]: print("Training time: %.3f (s)"%(cross_val_rh_subsampling_diff_num_features_clf.elapsed_
→˓training_time))

Training time: 37.453 (s)

[11]: print('Total number of hyperboxes from all base learners = %d'%cross_val_rh_subsampling_
→˓diff_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 1110

Prediction

[12]: y_pred = cross_val_rh_subsampling_diff_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 93.86%

248 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Apply pruning for base learners

[13]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
cross_val_rh_subsampling_diff_num_features_clf.simple_pruning_base_estimators(X_val, y_
→˓val, acc_threshold, keep_empty_boxes)

[13]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

max_features=0.5, n_estimators=20, n_iter=20,
n_jobs=4, random_state=0)

[14]: print('Total number of hyperboxes from all base learners after pruning = %d'%cross_val_
→˓rh_subsampling_diff_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 671

Prediction after doing a pruning procedure

[15]: y_pred_2 = cross_val_rh_subsampling_diff_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 95.61%

b. The number of features used in each base learner is the same and is equal to the given maximum
number of features

[16]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features
class_balanced = False # do not use the class-balanced sampling mode
use the same numbers of features for base learners and the number of used features is␣
→˓the given maximum number of features
feature_balanced = True
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣
→˓combination of hyperparameters
k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

2.8. Tutorials 249

hyperbox-brain, Release 0.1.1

[17]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm
base_estimator = OnlineGFMM()

[18]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

[19]: cross_val_rh_subsampling_same_num_features_clf = CrossValRandomHyperboxesClassifier(base_
→˓estimator=base_estimator, base_estimator_params=base_estimator_params, n_estimators=n_
→˓estimators, max_samples=max_samples, max_features=max_features, class_balanced=class_
→˓balanced, feature_balanced=feature_balanced, n_iter=n_iter, k_fold=k_fold, n_jobs=n_
→˓jobs, random_state=0)
cross_val_rh_subsampling_same_num_features_clf.fit(Xtr, ytr)

[19]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

feature_balanced=True, max_features=0.5,
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[20]: print("Training time: %.3f (s)"%(cross_val_rh_subsampling_same_num_features_clf.elapsed_
→˓training_time))

Training time: 45.047 (s)

[21]: print('Total number of hyperboxes from all base learners = %d'%cross_val_rh_subsampling_
→˓same_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 973

250 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction

[22]: y_pred = cross_val_rh_subsampling_same_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 93.86%

Apply pruning for base learners

[23]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
cross_val_rh_subsampling_same_num_features_clf.simple_pruning_base_estimators(X_val, y_
→˓val, acc_threshold, keep_empty_boxes)

[23]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

feature_balanced=True, max_features=0.5,
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

Prediction after doing a pruning procedure

[24]: y_pred_2 = cross_val_rh_subsampling_same_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 94.74%

2. Using random undersampling to generate class-balanced training sets for various base learners

a. The number of features used in each base learner is different and is bounded by a maximum
number of features

Training

[25]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features

(continues on next page)

2.8. Tutorials 251

hyperbox-brain, Release 0.1.1

(continued from previous page)

class_balanced = True # use the class-balanced sampling mode
feature_balanced = False # use different numbers of features for base learners
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣
→˓combination of hyperparameters
k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

[26]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm
base_estimator = OnlineGFMM()

[27]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

[28]: cross_val_rh_class_balanced_diff_num_features_clf =␣
→˓CrossValRandomHyperboxesClassifier(base_estimator=base_estimator, base_estimator_
→˓params=base_estimator_params, n_estimators=n_estimators, max_samples=max_samples, max_
→˓features=max_features, class_balanced=class_balanced, feature_balanced=feature_
→˓balanced, n_iter=n_iter, k_fold=k_fold, n_jobs=n_jobs, random_state=0)
cross_val_rh_class_balanced_diff_num_features_clf.fit(Xtr, ytr)

[28]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True, max_features=0.5,
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[29]: print("Training time: %.3f (s)"%(cross_val_rh_class_balanced_diff_num_features_clf.
→˓elapsed_training_time))

Training time: 33.372 (s)

[30]: print('Total number of hyperboxes from all base learners = %d'%cross_val_rh_class_
→˓balanced_diff_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners = 1123

252 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction

[31]: y_pred = cross_val_rh_class_balanced_diff_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 92.11%

Apply pruning for base learners

[32]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
cross_val_rh_class_balanced_diff_num_features_clf.simple_pruning_base_estimators(X_val,␣
→˓y_val, acc_threshold, keep_empty_boxes)

[32]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True, max_features=0.5,
n_estimators=20, n_iter=20, n_jobs=4,
random_state=0)

[33]: print('Total number of hyperboxes from all base learners after pruning = %d'%cross_val_
→˓rh_class_balanced_diff_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 663

Prediction after doing a pruning procedure

[34]: y_pred_2 = cross_val_rh_class_balanced_diff_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 94.74%

2.8. Tutorials 253

hyperbox-brain, Release 0.1.1

b. The number of features used in each base learner is the same and is equal to the given maximum
number of features

[35]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
max_features = 0.5 # sampling rate to generate the maximum number of features
class_balanced = True # use the class-balanced sampling mode
use the same numbers of features for base learners and the number of used features is␣
→˓the given maximum number of features
feature_balanced = True
n_jobs = 4 # number of processes is used to build base learners
n_iter = 20 # Number of parameter settings that are randomly sampled to choose the best␣
→˓combination of hyperparameters
k_fold = 5 # Number of folds to conduct Stratified K-Fold cross-validation for␣
→˓hyperparameter tunning

[36]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm
base_estimator = OnlineGFMM()

[37]: # Init ranges for hyperparameters of base learners to perform a random search process␣
→˓for hyperparameter tunning
base_estimator_params = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':
→˓[0.5, 1, 2, 4, 8, 16]}

[38]: cross_val_rh_class_balanced_same_num_features_clf =␣
→˓CrossValRandomHyperboxesClassifier(base_estimator=base_estimator, base_estimator_
→˓params=base_estimator_params, n_estimators=n_estimators, max_samples=max_samples, max_
→˓features=max_features, class_balanced=class_balanced, feature_balanced=feature_
→˓balanced, n_iter=n_iter, k_fold=k_fold, n_jobs=n_jobs, random_state=0)
cross_val_rh_class_balanced_same_num_features_clf.fit(Xtr, ytr)

[38]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True, feature_balanced=True,
max_features=0.5, n_estimators=20, n_iter=20,
n_jobs=4, random_state=0)

[39]: print("Training time: %.3f (s)"%(cross_val_rh_class_balanced_same_num_features_clf.
→˓elapsed_training_time))

Training time: 30.501 (s)

[40]: print('Total number of hyperboxes from all base learners = %d'%cross_val_rh_class_
→˓balanced_same_num_features_clf.get_n_hyperboxes())

254 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Total number of hyperboxes from all base learners = 1623

Prediction

[41]: y_pred = cross_val_rh_class_balanced_same_num_features_clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 91.23%

Apply pruning for base learners

[42]: acc_threshold=0.5 # minimum accuracy score of the unpruned hyperboxes
keep_empty_boxes=False # False means hyperboxes that do not join the prediction process␣
→˓within the pruning procedure are also eliminated
cross_val_rh_class_balanced_same_num_features_clf.simple_pruning_base_estimators(X_val,␣
→˓y_val, acc_threshold, keep_empty_boxes)

[42]: CrossValRandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

base_estimator_params={'gamma': [0.5, 1, 2,
4, 8, 16],

'theta': array([0.05, 0.1 , 0.
→˓15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),
'theta_min': [1]},

class_balanced=True, feature_balanced=True,
max_features=0.5, n_estimators=20, n_iter=20,
n_jobs=4, random_state=0)

[43]: print('Total number of hyperboxes from all base learners after pruning = %d'%cross_val_
→˓rh_class_balanced_same_num_features_clf.get_n_hyperboxes())

Total number of hyperboxes from all base learners after pruning = 1234

Prediction after doing a pruning procedure

[44]: y_pred_2 = cross_val_rh_class_balanced_same_num_features_clf.predict(X_test)
acc_pruned = accuracy_score(y_test, y_pred_2)
print(f'Testing accuracy (after pruning) = {acc_pruned * 100: .2f}%')

Testing accuracy (after pruning) = 95.61%

2.8. Tutorials 255

hyperbox-brain, Release 0.1.1

2.8.5 Mixed data learners

Enhanced Improved Online Learning Algorithm with Mixed-Attribute Data for GFMM

This example shows how to use the general fuzzy min-max neural network trained by the extended improved incremental
learning algorithm for mixed attribute data (EIOL-GFMM)

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the GFMM
classifiers require features in the unit cube. Therefore, continuous features need to be normalised before training. For
categorical feature, nothing needs to be done as the EIOL-GFMM does not require any categorical feature encoding
methods.

1. Execute directly from the python file

[1]: import os
import warnings
warnings.filterwarnings('ignore')
from sklearn.metrics import accuracy_score

Get the path to the this jupyter notebook file

[2]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[2]: 'C:\\hyperbox-brain\\examples\\mixed_data'

Get the home folder of the Hyperbox-Brain project

[3]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[3]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the GFMM classifier using the
extended improved online learning algorithm for mixed attribute data

[4]: eiol_gfmm_file_path = os.path.join(project_dir, Path("hbbrain/mixed_data/eiol_gfmm.py"))
eiol_gfmm_file_path

[4]: 'C:\\hyperbox-brain\\hbbrain\\mixed_data\\eiol_gfmm.py'

256 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Run the found file by showing the execution directions

[5]: !python "{eiol_gfmm_file_path}" -h

usage: eiol_gfmm.py [-h] -training_file TRAINING_FILE -testing_file
TESTING_FILE -categorical_features CATEGORICAL_FEATURES
[--theta THETA] [--delta DELTA] [--gamma GAMMA]
[--alpha ALPHA]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

-categorical_features CATEGORICAL_FEATURES
Indices of categorical features

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--delta DELTA Maximum changing entropy for categorical features (in

the range of (0, 1]) (default: 0.5)
--gamma GAMMA A sensitivity parameter describing the speed of

decreasing of the membership function in each
continous dimension (larger than 0) (default: 1)

--alpha ALPHA The trade-off weighting factor between categorical
features and numerical features for membership values
(in the range of [0, 1]) (default: 0.5)

Create the path to mixed-attribute training and testing datasets stored in the dataset folder.

This example uses the japanese_credit dataset for illustration purposes. The continuous features in this dataset were
normalised into the range of [0, 1], while categorical features were kept unchanged.

[6]: training_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_train.csv"))
training_data_file

[6]: 'C:\\hyperbox-brain\\dataset\\japanese_credit_train.csv'

[7]: testing_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_test.csv"))
testing_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\japanese_credit_test.csv'

2.8. Tutorials 257

hyperbox-brain, Release 0.1.1

Run a demo program

[8]: !python "{eiol_gfmm_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" -categorical_features "[0, 3, 4, 5, 6, 8, 9, 11,12]" --theta 0.1 -
→˓-delta 0.6 --gamma 1 --alpha 0.5

Number of hyperboxes = 378
Testing accuracy = 82.44%

2. Using the EIOL-GFMM algorithm to train a GFMM classifier for mixed-attribute data through its
init, fit, and predict functions

[9]: from hbbrain.mixed_data.eiol_gfmm import ExtendedImprovedOnlineGFMM
import pandas as pd

Create mixed attribute training, validation, and testing data sets.

This example will use the japanese_credit dataset for illustration purposes. The continuous features in this dataset were
normalised into the range of [0, 1], while categorical features were kept unchanged.

[10]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1].astype(int)

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1].astype(int)

[11]: val_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_val.csv"))
df_val = pd.read_csv(val_data_file, header=None)
Xy_val = df_val.to_numpy()
Xval = Xy_val[:, :-1]
yval = Xy_val[:, -1].astype(int)

Initializing parameters

[12]: theta = 0.1 # maximum hyperbox size for continuous features
delta = 0.6 # The maximum value of the increased entropy degree for each categorical␣
→˓dimension after extended.
gamma = 1 # speed of decreasing degree in the membership values of continuous features
alpha = 0.5 # the trade-off factor for the contribution of categorical features and␣
→˓continuous features to final membership value

258 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Indicate the indices of categorical features in the training data

[13]: categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12]

a. Training the EIOL-GFMM algorithm with the categorical feature expansion condition regarding the
maximum entropy changing threshold be applied for every categorical dimension

Training

[14]: eiol_gfmm_clf = ExtendedImprovedOnlineGFMM(theta=theta, gamma=gamma, delta=delta,␣
→˓alpha=alpha)
eiol_gfmm_clf.fit(Xtr, ytr, categorical_features, type_cat_expansion=0)

[14]: ExtendedImprovedOnlineGFMM(C=array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
→˓ 1, 0, 1, 1,

0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0,
0, 1, 1,...
[8.60317460e-02, 3.39285714e-01, 5.26315789e-02, 0.00000000e+00,
6.00000000e-02, 2.20600000e-02],
...,
[1.41587302e-01, 2.82142857e-02, 2.98245614e-03, 0.00000000e+00,
7.20000000e-02, 0.00000000e+00],
[6.93174603e-01, 3.03571429e-01, 2.45614035e-01, 4.47761194e-02,
0.00000000e+00, 0.00000000e+00],
[5.38412698e-01, 1.03571429e-02, 5.26315789e-01, 2.98507463e-01,
0.00000000e+00, 1.50000000e-01]]),

delta=0.6, theta=0.1)

[15]: print("Number of existing hyperboxes = %d"%(eiol_gfmm_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 378

[16]: print("Training time: %.3f (s)"%eiol_gfmm_clf.elapsed_training_time)

Training time: 0.991 (s)

Prediction

[17]: from hbbrain.constants import MANHATTAN_DIS, PROBABILITY_MEASURE

2.8. Tutorials 259

hyperbox-brain, Release 0.1.1

Predict the class label for input samples using a probability measure based on the number of sam-
ples included inside the winner hyperboxes for the samples located on the decision boundaries

[18]: y_pred = eiol_gfmm_clf.predict(Xtest, PROBABILITY_MEASURE)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 82.44%

Predict the class label for input samples using Manhattan distance measure (applied only for con-
tinuous features) for the samples located on the decision boundaries

[19]: y_pred = eiol_gfmm_clf.predict(Xtest, MANHATTAN_DIS)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (Manhattan distance for samples on the decision boundaries) = {acc *␣
→˓100: .2f}%')

Accuracy (Manhattan distance for samples on the decision boundaries) = 78.63%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[20]: sample_need_explain = 1
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes, dict_cat_bound_
→˓classes = eiol_gfmm_clf.get_sample_explanation(Xtest[sample_need_explain])
print("Explain samples:")
print("Membership values for classes: ", mem_val_classes)
print("Predicted class = ", y_pred_input_0)
print("Minimum continuous points of the selected hyperbox for each class: ", min_points_
→˓classes)
print("Maximum continuous points of the selected hyperbox for each class: ", max_points_
→˓classes)
print("Categorical bounds of the selected hyperbox for each class: ", dict_cat_bound_
→˓classes)

Explain samples:
Membership values for classes: {0: 0.8441127694859039, 1: 0.9191765873015874}
Predicted class = 1
Minimum continuous points of the selected hyperbox for each class: {0: array([0.
→˓13888889, 0.30357143, 0.06140351, 0.14925373, 0.04 ,

0.0099]), 1: array([0.08603175, 0.30660714, 0.02631579, 0.10447761, 0.048 ␣
→˓,

0.])}
Maximum continuous points of the selected hyperbox for each class: {0: array([0.
→˓13888889, 0.30357143, 0.06140351, 0.14925373, 0.04 ,

0.0099]), 1: array([0.08603175, 0.30660714, 0.02631579, 0.10447761, 0.048 ␣
→˓,

0.])}
Categorical bounds of the selected hyperbox for each class: {0: array([{'a': 1}, {'u':␣
→˓1}, {'g': 1}, {'q': 1}, {'v': 1}, {'t': 1},

(continues on next page)

260 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

{'t': 1}, {'f': 1}, {'g': 1}], dtype=object), 1: array([{'a': 1}, {'u': 1}, {'g':␣
→˓1}, {'cc': 1}, {'h': 1}, {'t': 1},

{'t': 1}, {'f': 1}, {'g': 1}], dtype=object)}

Apply pruning for the trained classifier

[21]: acc_threshold = 0.5 # minimum accuracy of hyperboxes being retained
keep_empty_boxes = False # do not keep the hyperboxes which do not join the prediction␣
→˓process on the validation set
using a probability measure based on the number of samples included in the hyperbox␣
→˓for handling samples located on the boundary
type_boundary_handling = PROBABILITY_MEASURE
eiol_gfmm_clf.simple_pruning(Xval, yval, acc_threshold, keep_empty_boxes, type_boundary_
→˓handling)

[21]: ExtendedImprovedOnlineGFMM(C=array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
→˓ 1, 0, 1, 1,

0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0,
1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0,
0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
1, 1, 1,...
[8.60317460e-02, 3.39285714e-01, 5.26315789e-02, 0.00000000e+00,
6.00000000e-02, 2.20600000e-02],
...,
[1.41587302e-01, 2.82142857e-02, 2.98245614e-03, 0.00000000e+00,
7.20000000e-02, 0.00000000e+00],
[6.93174603e-01, 3.03571429e-01, 2.45614035e-01, 4.47761194e-02,
0.00000000e+00, 0.00000000e+00],
[5.38412698e-01, 1.03571429e-02, 5.26315789e-01, 2.98507463e-01,
0.00000000e+00, 1.50000000e-01]]),

delta=0.6, theta=0.1)

[22]: print('Number of hyperboxes after pruning = %d'%eiol_gfmm_clf.get_n_hyperboxes())

Number of hyperboxes after pruning = 358

Make prediction after pruning

Predict the class label for input samples using a probability measure based on the number of sam-
ples included inside the winner hyperboxes for the samples located on the decision boundaries

[23]: y_pred_2 = eiol_gfmm_clf.predict(Xtest, PROBABILITY_MEASURE)
acc = accuracy_score(ytest, y_pred_2)
print(f'Accuracy after pruning = {acc * 100: .2f}%')

Accuracy after pruning = 83.21%

2.8. Tutorials 261

hyperbox-brain, Release 0.1.1

Predict the class label for input samples using Manhattan distance measure (applied only for con-
tinuous features) for the samples located on the decision boundaries

[24]: y_pred_2 = eiol_gfmm_clf.predict(Xtest, MANHATTAN_DIS)
acc = accuracy_score(ytest, y_pred_2)
print(f'Accuracy (Manhattan distance for samples on the decision boundaries) = {acc *␣
→˓100: .2f}%')

Accuracy (Manhattan distance for samples on the decision boundaries) = 79.39%

b. Training the EIOL-GFMM algorithm with the categorical feature expansion condition regarding
the maximum entropy changing threshold be applied for the average changing entropy value over
all categorical features.

Training

[25]: eiol_gfmm_clf = ExtendedImprovedOnlineGFMM(theta=theta, gamma=gamma, delta=delta,␣
→˓alpha=alpha)
eiol_gfmm_clf.fit(Xtr, ytr, categorical_features, type_cat_expansion=1)

[25]: ExtendedImprovedOnlineGFMM(C=array([0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
→˓ 0, 0, 1, 1,

1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1,
1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1,
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,
1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0,
1, 0, 1,...
[2.67142857e-01, 3.80892857e-01, 2.98245614e-03, 1.79104478e-01,
6.45000000e-02, 3.00000000e-05],
[7.48730159e-01, 1.78571429e-01, 1.40350877e-01, 5.97014925e-02,
0.00000000e+00, 9.90000000e-04],
[5.33015873e-01, 2.32142857e-01, 3.50877193e-02, 0.00000000e+00,
0.00000000e+00, 2.28000000e-03],
[5.38412698e-01, 1.03571429e-02, 5.26315789e-01, 2.98507463e-01,
0.00000000e+00, 1.50000000e-01]]),

delta=0.6, theta=0.1)

[26]: print("Number of existing hyperboxes = %d"%(eiol_gfmm_clf.get_n_hyperboxes()))

Number of existing hyperboxes = 159

[27]: print("Training time: %.3f (s)"%eiol_gfmm_clf.elapsed_training_time)

262 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Training time: 0.256 (s)

Prediction

Predict the class label for input samples using a probability measure based on the number of sam-
ples included inside the winner hyperboxes for the samples located on the decision boundaries

[28]: y_pred = eiol_gfmm_clf.predict(Xtest, PROBABILITY_MEASURE)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 83.97%

Predict the class label for input samples using Manhattan distance measure (applied only for con-
tinuous features) for the samples located on the decision boundaries

[29]: y_pred = eiol_gfmm_clf.predict(Xtest, MANHATTAN_DIS)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (Manhattan distance for samples on the decision boundaries) = {acc *␣
→˓100: .2f}%')

Accuracy (Manhattan distance for samples on the decision boundaries) = 80.92%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[30]: sample_need_explain = 1
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes, dict_cat_bound_
→˓classes = eiol_gfmm_clf.get_sample_explanation(Xtest[sample_need_explain])
print("Explain samples:")
print("Membership values for classes: ", mem_val_classes)
print("Predicted class = ", y_pred_input_0)
print("Minimum continuous points of the selected hyperbox for each class: ", min_points_
→˓classes)
print("Maximum continuous points of the selected hyperbox for each class: ", max_points_
→˓classes)
print("Categorical bounds of the selected hyperbox for each class: ", dict_cat_bound_
→˓classes)

Explain samples:
Membership values for classes: {0: 0.818407960199005, 1: 0.8854166666666667}
Predicted class = 1
Minimum continuous points of the selected hyperbox for each class: {0: array([6.
→˓07936508e-02, 3.57142857e-01, 4.38596491e-03, 1.49253731e-02,

0.00000000e+00, 1.00000000e-05]), 1: array([1.46825397e-01, 4.19642857e-01, 1.
→˓75438596e-02, 1.49253731e-02,

6.00000000e-02, 1.10000000e-04])}
Maximum continuous points of the selected hyperbox for each class: {0: array([0.

(continues on next page)

2.8. Tutorials 263

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓15079365, 0.45089286, 0.03508772, 0.02985075, 0.06 ,
0.05552]), 1: array([0.21698413, 0.51785714, 0.10824561, 0.02985075, 0.15 ␣

→˓,
0.00551])}

Categorical bounds of the selected hyperbox for each class: {0: array([{'b': 2, 'a': 1},
→˓ {'u': 3}, {'g': 3}, {'w': 2, 'c': 1},

{'h': 1, 'v': 2}, {'f': 3}, {'t': 3}, {'f': 3}, {'g': 3}],
dtype=object), 1: array([{'a': 2}, {'u': 2}, {'g': 2}, {'x': 2}, {'h': 2}, {'t': 2}

→˓,
{'t': 2}, {'t': 1, 'f': 1}, {'g': 2}], dtype=object)}

Apply pruning for the trained classifier

[31]: acc_threshold = 0.5 # minimum accuracy of hyperboxes being retained
keep_empty_boxes = False # do not keep the hyperboxes which do not join the prediction␣
→˓process on the validation set
using a probability measure based on the number of samples included in the hyperbox␣
→˓for handling samples located on the boundary
type_boundary_handling = PROBABILITY_MEASURE
eiol_gfmm_clf.simple_pruning(Xval, yval, acc_threshold, keep_empty_boxes, type_boundary_
→˓handling)

[31]: ExtendedImprovedOnlineGFMM(C=array([0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,
→˓ 1, 0, 1, 1,

0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,
0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1]),

D=array([[{'a': 3, 'b': 12}, {'u': 10, 'y': 5}, {'g': 10, 'p':
→˓ 5},

{'q': 1, 'w': 4, 'k': 5, 'c': 2, 'i': 1, 'x': 1, 'm': 1},
{'v': 11, 'h': 3, 'ff': 1}, {'f': 15}, {'t': 5, 'f': 10},
{'t': 6, 'f': 9}, {'g': 14, 's': 1}],
[{'b': 2, 'a': 3}, {'u': 4...
[4.35238095e-01, 2.32142857e-01, 1.75438596e-02, 4.47761194e-02,
1.14000000e-01, 0.00000000e+00],
[5.46349206e-01, 1.25000000e-01, 1.22807018e-01, 0.00000000e+00,
1.15000000e-01, 0.00000000e+00],
[6.09841270e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00],
[7.48730159e-01, 1.78571429e-01, 1.40350877e-01, 5.97014925e-02,
0.00000000e+00, 9.90000000e-04]]),

delta=0.6, theta=0.1)

264 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Make prediction after pruning

Predict the class label for input samples using a probability measure based on the number of sam-
ples included inside the winner hyperboxes for the samples located on the decision boundaries

[32]: y_pred = eiol_gfmm_clf.predict(Xtest, PROBABILITY_MEASURE)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 82.44%

Predict the class label for input samples using Manhattan distance measure (applied only for con-
tinuous features) for the samples located on the decision boundaries

[33]: y_pred = eiol_gfmm_clf.predict(Xtest, MANHATTAN_DIS)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy (Manhattan distance for samples on the decision boundaries) = {acc *␣
→˓100: .2f}%')

Accuracy (Manhattan distance for samples on the decision boundaries) = 82.44%

Batch-Incremental Learning Algorithm for GFMM using Probability-based Measures for Categorical
Features

This example shows how to use the general fuzzy min-max neural network trained by the batch-incremental learning
algorithm, in which categorical features are encoded using the ordinal encoding method and the similarity values among
categorical feature are computed using frequency of categorical values.

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the GFMM
classifiers require features in the unit cube. Therefore, continuous features need to be normalised before training.
For categorical features, nothing needs to be done as this FreqCatOnlineGFMM classifier will apply the appropriate
encoding method for the categorical values.

1. Execute directly from the python file

[1]: import os
import warnings
warnings.filterwarnings('ignore')
from sklearn.metrics import accuracy_score

2.8. Tutorials 265

hyperbox-brain, Release 0.1.1

Get the path to the this jupyter notebook file

[2]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[2]: 'C:\\hyperbox-brain\\examples\\mixed_data'

Get the home folder of the Hyperbox-Brain project

[3]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[3]: WindowsPath('C:/hyperbox-brain')

Create the path to the Python file containing the implementation of the GFMM classifier using the
online learning algorithm with the cateogical feature similarity measure based on the frequence of
occurence of categorical values for mixed attribute features

[4]: freq_cat_gfmm_file_path = os.path.join(project_dir, Path("hbbrain/mixed_data/freq_cat_
→˓onln_gfmm.py"))
freq_cat_gfmm_file_path

[4]: 'C:\\hyperbox-brain\\hbbrain\\mixed_data\\freq_cat_onln_gfmm.py'

Run the found file by showing the execution directions

[5]: !python "{freq_cat_gfmm_file_path}" -h

usage: freq_cat_onln_gfmm.py [-h] -training_file TRAINING_FILE -testing_file
TESTING_FILE -categorical_features
CATEGORICAL_FEATURES [--theta THETA]
[--theta_min THETA_MIN] [--eta ETA]
[--gamma GAMMA] [--alpha ALPHA]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

-categorical_features CATEGORICAL_FEATURES
Indices of categorical features

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(continues on next page)

266 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

(default: 0.5)
--theta_min THETA_MIN

Mimimum value of the maximum hyperbox size to escape
the training loop (in the range of (0, 1]) (default:
0.5)

--eta ETA Maximum similarity value for each pair of categorical
values (in the range of (0, 1] (default: 0.5

--gamma GAMMA A sensitivity parameter describing the speed of
decreasing of the membership function in each
continuous dimension (larger than 0) (default: 1)

--alpha ALPHA Multiplier showing the decrease of theta in each step
(default: 0.9)

Create the path to mixed-attribute training and testing datasets stored in the dataset folder.

This example uses the japanese_credit dataset for illustration purposes. The continuous features in this dataset were
normalised into the range of [0, 1], while categorical features were kept unchanged.

[6]: training_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_train.csv"))
training_data_file

[6]: 'C:\\hyperbox-brain\\dataset\\japanese_credit_train.csv'

[7]: testing_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_test.csv"))
testing_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\japanese_credit_test.csv'

Run a demo program

[8]: !python "{freq_cat_gfmm_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" -categorical_features "[0, 3, 4, 5, 6, 8, 9, 11,12]" --theta 0.1 -
→˓-theta_min 0.1 --eta 0.6 --gamma 1

Number of hyperboxes = 266
Testing accuracy = 80.92%

2. Using the FreqCatOnlineGFMM algorithm to train a GFMM classifier for mixed-attribute data
through its init, fit, and predict functions

[9]: from hbbrain.mixed_data.freq_cat_onln_gfmm import FreqCatOnlineGFMM
import pandas as pd

2.8. Tutorials 267

hyperbox-brain, Release 0.1.1

Create mixed attribute training, validation, and testing data sets.

This example will use the japanese_credit dataset for illustration purposes. The continuous features in this dataset were
normalised into the range of [0, 1], while categorical features were kept unchanged.

[10]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1].astype(int)

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1].astype(int)

[11]: val_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_val.csv"))
df_val = pd.read_csv(val_data_file, header=None)
Xy_val = df_val.to_numpy()
Xval = Xy_val[:, :-1]
yval = Xy_val[:, -1].astype(int)

Initializing parameters

[12]: theta = 0.1 # maximum hyperbox size for continuous features
theta_min = 0.1 # Only performing one training loop
eta = 0.6 # Maximum similarity value for each pair of categorical values
gamma = 1 # speed of decreasing degree in the membership values of continuous features

Indicate the indices of categorical features in the training data

[13]: categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12]

Training

[14]: freq_cat_onln_gfmm_clf = FreqCatOnlineGFMM(theta=theta, theta_min=theta_min, eta=eta,␣
→˓gamma=gamma)
freq_cat_onln_gfmm_clf.fit(Xtr, ytr, categorical_features)

[14]: FreqCatOnlineGFMM(C=array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1,
→˓ 0,

1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1,

(continues on next page)

268 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

0, 0, 1, 1, 1, 0, 1, 0...
[1.32222222e-01, 3.92857143e-01, 5.26315789e-02, 0.00000000e+00,
6.00000000e-02, 2.20600000e-02],
...,
[4.35238095e-01, 2.32142857e-01, 1.75438596e-02, 4.47761194e-02,
7.25000000e-02, 0.00000000e+00],
[1.29682540e-01, 1.78571429e-02, 4.38596491e-03, 0.00000000e+00,
1.80000000e-01, 0.00000000e+00],
[5.38412698e-01, 1.03571429e-02, 5.26315789e-01, 2.98507463e-01,
0.00000000e+00, 1.50000000e-01]]),

eta=0.6, theta=0.1, theta_min=0.1)

[15]: print('Number of hyperboxes = %d'%freq_cat_onln_gfmm_clf.get_n_hyperboxes())

Number of hyperboxes = 266

[16]: print("Training time: %.3f (s)"%freq_cat_onln_gfmm_clf.elapsed_training_time)

Training time: 1.256 (s)

Prediction

[17]: y_pred = freq_cat_onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 80.92%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[18]: sample_need_explain = 1
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes, dict_min_point_
→˓cat_classes, dict_max_point_cat_classes = freq_cat_onln_gfmm_clf.get_sample_
→˓explanation(Xtest[sample_need_explain])
print("Explain samples:")
print("Membership values for classes: ", mem_val_classes)
print("Predicted class = ", y_pred_input_0)
print("Minimum continuous points of the selected hyperbox for each class: ", min_points_
→˓classes)
print("Maximum continuous points of the selected hyperbox for each class: ", max_points_
→˓classes)
print("Minimum categorical points of the selected hyperbox for each class: ", dict_min_
→˓point_cat_classes)
print("Maximum categorical points of the selected hyperbox for each class: ", dict_max_
→˓point_cat_classes)

Explain samples:
Membership values for classes: {0: 0.6642512077294687, 1: 0.75}
Predicted class = 1

(continues on next page)

2.8. Tutorials 269

hyperbox-brain, Release 0.1.1

(continued from previous page)

Minimum continuous points of the selected hyperbox for each class: {0: array([0.1852381␣
→˓, 0.04017857, 0.04526316, 0.02985075, 0.1 ,

0.]), 1: array([0.03301587, 0.02089286, 0.00578947, 0.02985075, 0.05 ␣
→˓,

0.])}
Maximum continuous points of the selected hyperbox for each class: {0: array([0.1852381␣
→˓, 0.04017857, 0.04526316, 0.02985075, 0.1 ,

0.]), 1: array([0.10984127, 0.10714286, 0.07315789, 0.07462687, 0.11 ␣
→˓,

0.02503])}
Minimum categorical points of the selected hyperbox for each class: {0: array([0.0, 1.0,
→˓ 0.0, 10.0, 7.0, 1.0, 1.0, 0.0, 0.0], dtype=object), 1: array([0.0, 1.0, 0.0, 7.0, 7.0,
→˓ 1.0, 1.0, 0.0, 0.0], dtype=object)}
Maximum categorical points of the selected hyperbox for each class: {0: array([100000,␣
→˓100000, 100000, 100000, 100000, 100000, 100000, 100000,

100000]), 1: array([0, 1, 0, 1, 3, 1, 1, 0, 0])}

Apply pruning for the trained classifier

[19]: acc_threshold = 0.5 # minimum accuracy of hyperboxes being retained
keep_empty_boxes = False # do not keep the hyperboxes which do not join the prediction␣
→˓process on the validation set
freq_cat_onln_gfmm_clf.simple_pruning(Xval, yval, acc_threshold, keep_empty_boxes)

[19]: FreqCatOnlineGFMM(C=array([0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,
→˓ 1,

0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0,
0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1,
0, 0, 1, 1, 1, 1, 0, 1...
[2.65873016e-01, 2.32142857e-01, 1.40350877e-01, 1.04477612e-01,
4.95000000e-02, 3.06500000e-02],
...,
[4.35238095e-01, 2.32142857e-01, 1.75438596e-02, 4.47761194e-02,
7.25000000e-02, 0.00000000e+00],
[1.29682540e-01, 1.78571429e-02, 4.38596491e-03, 0.00000000e+00,
1.80000000e-01, 0.00000000e+00],
[5.38412698e-01, 1.03571429e-02, 5.26315789e-01, 2.98507463e-01,
0.00000000e+00, 1.50000000e-01]]),

eta=0.6, theta=0.1, theta_min=0.1)

[20]: print('Number of hyperboxes after pruning = %d'%freq_cat_onln_gfmm_clf.get_n_
→˓hyperboxes())

Number of hyperboxes after pruning = 246

270 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Make prediction after pruning

[21]: y_pred = freq_cat_onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy after pruning = {acc * 100: .2f}%')

Accuracy after pruning = 83.21%

Batch-Incremental Learning Algorithm for GFMM using One-hot Encoding for Categorical Features

This example shows how to use the general fuzzy min-max neural network trained by the batch-incremental learning
algorithm, in which categorical features are encoded using one-hot encoding.

Note that the numerical features in training and testing datasets must be in the range of [0, 1] because the GFMM
classifiers require features in the unit cube. Therefore, continuous features need to be normalised before training.
For categorical features, nothing needs to be done as this OneHotOnlineGFMM classifier will apply the appropriate
encoding method for the categorical values.

1. Execute directly from the python file

[1]: import os
import warnings
warnings.filterwarnings('ignore')
from sklearn.metrics import accuracy_score
import pandas as pd

Get the path to the this jupyter notebook file

[2]: this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[2]: 'C:\\hyperbox-brain\\examples\\mixed_data'

Get the home folder of the Hyperbox-Brain project

[3]: from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[3]: WindowsPath('C:/hyperbox-brain')

2.8. Tutorials 271

hyperbox-brain, Release 0.1.1

Create the path to the Python file containing the implementation of the GFMM classifier using the
online learning algorithm with one-hot encoding for categorical values in mixed attribute features

[4]: onehot_gfmm_file_path = os.path.join(project_dir, Path("hbbrain/mixed_data/onehot_onln_
→˓gfmm.py"))
onehot_gfmm_file_path

[4]: 'C:\\hyperbox-brain\\hbbrain\\mixed_data\\onehot_onln_gfmm.py'

Run the found file by showing the execution directions

[5]: !python "{onehot_gfmm_file_path}" -h

usage: onehot_onln_gfmm.py [-h] -training_file TRAINING_FILE -testing_file
TESTING_FILE -categorical_features
CATEGORICAL_FEATURES [--theta THETA]
[--theta_min THETA_MIN]
[--min_percent_overlap_cat MIN_PERCENT_OVERLAP_CAT]
[--gamma GAMMA] [--alpha ALPHA]

The description of parameters

required arguments:
-training_file TRAINING_FILE

A required argument for the path to training data file
(including file name)

-testing_file TESTING_FILE
A required argument for the path to testing data file
(including file name)

-categorical_features CATEGORICAL_FEATURES
Indices of categorical features

optional arguments:
--theta THETA Maximum hyperbox size (in the range of (0, 1])

(default: 0.5)
--theta_min THETA_MIN

Mimimum value of the maximum hyperbox size to escape
the training loop (in the range of (0, 1]) (default:
0.5)

--min_percent_overlap_cat MIN_PERCENT_OVERLAP_CAT
Mimimum rate of numbers of categorical features
overlapped for hyperbox expansion (default: 0.5)

--gamma GAMMA A sensitivity parameter describing the speed of
decreasing of the membership function in each
continous dimension (larger than 0) (default: 1)

--alpha ALPHA Multiplier showing the decrease of theta in each step
(default: 0.9)

272 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Create the path to mixed-attribute training and testing datasets stored in the dataset folder.

This example uses the japanese_credit dataset for illustration purposes. The continuous features in this dataset were
normalised into the range of [0, 1], while categorical features were kept unchanged.

[6]: training_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_train.csv"))
training_data_file

[6]: 'C:\\hyperbox-brain\\dataset\\japanese_credit_train.csv'

[7]: testing_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_test.csv"))
testing_data_file

[7]: 'C:\\hyperbox-brain\\dataset\\japanese_credit_test.csv'

Run a demo program

[8]: !python "{onehot_gfmm_file_path}" -training_file "{training_data_file}" -testing_file "
→˓{testing_data_file}" -categorical_features "[0, 3, 4, 5, 6, 8, 9, 11,12]" --theta 0.1 -
→˓-theta_min 0.1 --min_percent_overlap_cat 0.6 --gamma 1

Number of hyperboxes = 166
Testing accuracy = 67.94%

2. Using the OneHotOnlineGFMM algorithm to train a GFMM classifier for mixed-attribute data
through its init, fit, and predict functions

[9]: from hbbrain.mixed_data.onehot_onln_gfmm import OneHotOnlineGFMM
import pandas as pd

Create mixed attribute training, validation, and testing data sets.

This example will use the japanese_credit dataset for illustration purposes. The continuous features in this dataset were
normalised into the range of [0, 1], while categorical features were kept unchanged.

[10]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1].astype(int)

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1].astype(int)

[11]: val_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_val.csv"))
df_val = pd.read_csv(val_data_file, header=None)

(continues on next page)

2.8. Tutorials 273

hyperbox-brain, Release 0.1.1

(continued from previous page)

Xy_val = df_val.to_numpy()
Xval = Xy_val[:, :-1]
yval = Xy_val[:, -1].astype(int)

Initializing parameters

[12]: theta = 0.1 # maximum hyperbox size for continuous features
theta_min = 0.1 # Only performing one training loop
min_percent_overlap_cat = 0.6 # Mimimum rate of numbers of categorical features␣
→˓overlapped for hyperbox expansion
gamma = 1 # speed of decreasing degree in the membership values of continuous features

Indicate the indices of categorical features in the training data

[13]: categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12]

Training

[14]: onehot_onln_gfmm_clf = OneHotOnlineGFMM(theta=theta, theta_min=theta_min, min_percent_
→˓overlap_cat=min_percent_overlap_cat, gamma=gamma)
onehot_onln_gfmm_clf.fit(Xtr, ytr, categorical_features)

[14]: OneHotOnlineGFMM(C=array([0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,␣
→˓1,

1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 1,...
1.00000000e-01, 4.00000000e-04],
[2.67142857e-01, 3.80892857e-01, 2.98245614e-03, 1.79104478e-01,
6.45000000e-02, 3.00000000e-05],
[7.48730159e-01, 1.78571429e-01, 1.40350877e-01, 5.97014925e-02,
0.00000000e+00, 9.90000000e-04],
[5.38412698e-01, 1.03571429e-02, 5.26315789e-01, 2.98507463e-01,
0.00000000e+00, 1.50000000e-01]]),

min_percent_overlap_cat=0.6, theta=0.1, theta_min=0.1)

[15]: print('Number of hyperboxes = %d'%onehot_onln_gfmm_clf.get_n_hyperboxes())

Number of hyperboxes = 166

[16]: print("Training time: %.3f (s)"%onehot_onln_gfmm_clf.elapsed_training_time)

Training time: 1.326 (s)

274 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction

[17]: y_pred = onehot_onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 67.94%

Explaining the predicted result for the input sample by showing membership values and hyperboxes
for each class

[18]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes, cat_poins_
→˓classes = onehot_onln_gfmm_clf.get_sample_explanation(Xtest[sample_need_explain])
print("Explain samples:")
print("Membership values for classes: ", mem_val_classes)
print("Predicted class = ", y_pred_input_0)
print("Minimum points of the selected hyperbox for each class: ", min_points_classes)
print("Maximum points of the selected hyperbox for each class: ", max_points_classes)
print("Categorical features of the selected hyperbox for each class: ", cat_poins_
→˓classes)

Explain samples:
Membership values for classes: {0: 0.9315476190476191, 1: 0.8133333333333332}
Predicted class = 0
Minimum points of the selected hyperbox for each class: {0: array([0.05031746, 0.
→˓00892857, 0. , 0.00094284, 0.05 ,

0.01286]), 1: array([0.21031746, 0.05053571, 0.00140351, 0. , 0.12 ␣
→˓,

0.00050875])}
Maximum points of the selected hyperbox for each class: {0: array([0.14880952, 0.
→˓10714286, 0.0877193 , 0.07462687, 0.14 ,

0.04208]), 1: array([0.29095238, 0.14285714, 0.0877193 , 0.01492537, 0.1965 ␣
→˓,

0.0033975])}
Categorical features of the selected hyperbox for each class: {0: array([array([True, ␣
→˓True]), array([False, True, True]),

array([True, False, True]),
array([True, True, True, False, True, True, True, True, True,
False, True, True, True, False]),
array([False, True, True, True, True, True, False, True, False]),
array([True, True]), array([True, True]),
array([True, True]), array([True, False, True])], dtype=object), 1:␣

→˓array([array([True, True]), array([False, True, True]),
array([True, False, True]),
array([False, True, False, False, True, False, False, False, False,
True, False, False, True, False]),
array([False, False, False, True, False, False, False, True, False]),
array([False, True]), array([True, True]),
array([True, True]), array([True, False, True])], dtype=object)}

2.8. Tutorials 275

hyperbox-brain, Release 0.1.1

Apply pruning for the trained classifier

[19]: acc_threshold = 0.5 # minimum accuracy of hyperboxes being retained
keep_empty_boxes = False # do not keep the hyperboxes which do not join the prediction␣
→˓process on the validation set
onehot_onln_gfmm_clf.simple_pruning(Xval, yval, acc_threshold, keep_empty_boxes)

[19]: OneHotOnlineGFMM(C=array([0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,␣
→˓1,

0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 1, 0, 1, 1]...
1.00000000e-01, 4.00000000e-04],
[2.67142857e-01, 3.80892857e-01, 2.98245614e-03, 1.79104478e-01,
6.45000000e-02, 3.00000000e-05],
[7.48730159e-01, 1.78571429e-01, 1.40350877e-01, 5.97014925e-02,
0.00000000e+00, 9.90000000e-04],
[5.38412698e-01, 1.03571429e-02, 5.26315789e-01, 2.98507463e-01,
0.00000000e+00, 1.50000000e-01]]),

min_percent_overlap_cat=0.6, theta=0.1, theta_min=0.1)

[20]: print('Number of hyperboxes after pruning = %d'%onehot_onln_gfmm_clf.get_n_hyperboxes())

Number of hyperboxes after pruning = 162

Make prediction after pruning

[21]: y_pred = onehot_onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy after pruning = {acc * 100: .2f}%')

Accuracy after pruning = 69.47%

2.8.6 Integration with sklearn pipeline

Integration of Single Hyperbox-based Models with Sklearn Pipeline and Hyperopt

This example shows how to integrate the GFMM classifier into the Pipeline class implemented by scikit-learn

Note that this example is illustrated by using the original online learning algorithm for GFMM model. However, it can
be used for any GFMM models using other learning algorithms

[1]: import warnings
warnings.filterwarnings('ignore')
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

276 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Load Iris dataset and prepare training and testing sets

[2]: from sklearn.datasets import load_iris

[3]: df = load_iris()
X = df.data
y = df.target

[4]: X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=0)

Create a pipeline of pre-processing method (i.e., normalization of data in the range of [0, 1]) and a
GFMM classifier.

Note: The GFMM classifier using an original online learning algorithm requires the input data in the range of [0, 1].

[5]: theta = 0.1
theta_min = 0.1
onln_gfmm_clf = OnlineGFMM(theta=theta, theta_min=theta_min)

[6]: pipe = Pipeline([('scaler', MinMaxScaler()), ('onln_gfmm', onln_gfmm_clf)])

Training

[7]: pipe.fit(X_train, y_train)

[7]: Pipeline(steps=[('scaler', MinMaxScaler()),
('onln_gfmm',
OnlineGFMM(C=array([2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 0, 1, 2, 2, 2,␣

→˓2, 1, 2, 2, 2,
1, 2, 1, 1, 2, 0, 1, 0, 0, 1, 0, 1, 2, 2, 0, 2, 0, 2, 1, 1, 0, 2,
2, 0, 0, 2, 2, 1, 1, 0, 1, 0, 2, 1]),

V=array([[0.58333333, 0.41666667, 0.68965517, 0.70833333],
[0.30555556, 0.41666667, 0.5862069 , 0.58333333],
[0.19444444, 0.625 , 0.05172414, 0.04166667],
[0.44444444, 0.416666...
[0.86111111, 0.33333333, 0.86206897, 0.75],
[0.38888889, 0.25 , 0.44827586, 0.375],
[0.66666667, 0.41666667, 0.67241379, 0.66666667],
[0.19444444, 0.41666667, 0.0862069 , 0.04166667],
[0.44444444, 0.5 , 0.63793103, 0.70833333],
[0.33333333, 0.625 , 0.03448276, 0.04166667],
[0.55555556, 0.375 , 0.77586207, 0.70833333],
[0.41666667, 0.29166667, 0.51724138, 0.375]]),

theta=0.1, theta_min=0.1))])

2.8. Tutorials 277

hyperbox-brain, Release 0.1.1

Testing

[8]: acc = pipe.score(X_test, y_test)
print(f'Testing accuracy = {acc * 100: .2f}%')

>>> The testing sample 26 with the coordinate [0.08333333 0.66666667 -0.01724138 0.
→˓04166667] is outside the range [0, 1]. Membership value = 0.916667. The prediction is␣
→˓more likely incorrect.
Testing accuracy = 96.67%

The example below shows how to use the HyperOpt library in combination with PipleLine and Cross-
validation to find the best model

[9]: from hyperopt import fmin, hp, tpe, Trials, space_eval, STATUS_OK
from hyperopt.pyll import scope as ho_scope
from hyperopt.pyll.stochastic import sample as ho_sample

Define search space

[10]: hp_space_gfmm = {
'theta': hp.uniform('theta', 0, 1),
'gamma': hp.uniform('gamma', 0, 10)

}

Draw random sample to see if hyperspace is correctly defined
ho_sample(hp_space_gfmm)

[10]: {'gamma': 4.542173063848446, 'theta': 0.8064001273117817}

Defining model

[11]: def init_model(hps):
"""
Constructs estimator

Parameters:

hps : sample point from search space

Returns:

model : sklearn.Pipeline.pipeline with hyperparameters set up as per hps
"""

Assembing pipeline
model = Pipeline([

('scale', MinMaxScaler()),
('clf', OnlineGFMM(**hps))

(continues on next page)

278 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

])

return model

[12]: from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import accuracy_score

Now we have to define function to minimize. We’ll stick with cross-validation score on train set. Our function
should take a sample from search space and return negative mean Acc score. As noted above, it is very important
to return negative score here, since otherwise we’ll seek for hyperparameters that minimize Acc

[13]: def f_to_min1(hps, X, y, ncv=5):
"""
Target function for optimization

Parameters:

hps : sample point from search space
X : feature matrix
y : target array
ncv : number of folds for cross-validation

Returns:

: target function value (negative mean cross-val Acc score)
"""

model = init_model(hps)
cv_res = cross_val_score(model, X, y, cv=StratifiedKFold(ncv, shuffle=True, random_

→˓state=0),
scoring='accuracy', n_jobs=1)

return -cv_res.mean()

Running optimization

[14]: from functools import partial
import numpy as np

All right, let’s run optimization for 100 rounds using TPE algorithm, meaning that we use TPE to suggest next
sample values based on previous function evaluations. We’ll use Trials class objects to keep track of optimization
history. Note: We’re binding X and y arguments of target function to X_train and y_train respectively, using
functools.partial, since target function of fmin may accept only a search space point.

[15]: trials_clf = Trials()
best_clf = fmin(partial(f_to_min1, X=X_train, y=y_train),

hp_space_gfmm, algo=tpe.suggest, max_evals=100,
trials=trials_clf, rstate = np.random.default_rng(0))

>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.888627. The prediction is␣

(continues on next page)

2.8. Tutorials 279

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.945905. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.842222. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.800702. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.701052. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.837797. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.921216. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.899729. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.709743. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.564614. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.414332. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.799199. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.414332. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.260208. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.814764. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.910028. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.885491. The prediction is␣
→˓more likely incorrect.

(continues on next page)

280 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.668525. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.502788. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.227886. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.663078. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.227886. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.024698. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.633662. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.822064. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.773537. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.344448. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.016672. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.417466. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.717055. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.174743. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.

(continues on next page)

2.8. Tutorials 281

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓79166667] is outside the range [0, 1]. Membership value = 0.971811. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.987699. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.957717. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.946590. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.946590. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.917323. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.971654. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.917323. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.895566. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.843349. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.586375. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.793187. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.379562. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.310625. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.216289. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.595076. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.823306. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.595076. The prediction is␣

(continues on next page)

282 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.232775. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.232775. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.536979. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.797955. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.536979. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.415131. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.122697. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.225142. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.734335. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.225142. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.527092. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.770302. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.707657. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.153744. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.

(continues on next page)

2.8. Tutorials 283

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.207652. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.728338. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.207652. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.484989. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.823425. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.484989. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.024189. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.024189. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.673487. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.836743. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.510230. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.381343. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.381343. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.738973. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.886097. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.

(continues on next page)

284 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓91666667] is outside the range [0, 1]. Membership value = 0.738973. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.505423. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.505423. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.505573. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.759850. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.694354. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.115235. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.585234. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.857794. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.585234. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.476084. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.214127. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.650744. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.825372. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.476116. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.338252. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.338252. The prediction is more␣

(continues on next page)

2.8. Tutorials 285

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.679227. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.839613. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.518840. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.392219. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.392219. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.666495. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.833248. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.499743. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.368097. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.368097. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.847477. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.923738. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.847477. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.711009. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.711009. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.869514. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.934757. The prediction is␣
→˓more likely incorrect.

(continues on next page)

286 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.869514. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.752763. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.752763. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.977404. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.990140. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.977404. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.957186. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.957186. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.792677. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.896339. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.792677. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.607178. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.607178. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.876281. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.946013. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.876281. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.765584. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣

(continues on next page)

2.8. Tutorials 287

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓] is outside the range [0, 1]. Membership value = 0.765584. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.849137. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.934169. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.849137. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.748562. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.714154. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.912143. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.961663. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.912143. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.833535. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.833535. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.810589. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.905295. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.715884. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.684315. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.641116. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.939373. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.969686. The prediction is␣

(continues on next page)

288 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.909059. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.885127. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.885127. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.937304. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.968652. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.905956. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.881207. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.881207. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.719306. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.877516. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.719306. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.532177. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.468160. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.398965. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.737730. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.398965. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.

(continues on next page)

2.8. Tutorials 289

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.389053. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.733405. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.389053. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.448095. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.759169. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.448095. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.457615. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.763323. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.186423. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.551708. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣

(continues on next page)

290 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓] is outside the range [0, 1]. Membership value = 0.782258. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.364920. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.197794. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.659884. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.834801. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.789746. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.391371. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.087057. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.627892. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.837625. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.627892. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.379819. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.294953. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.649130. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.824565. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.473694. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.335193. The prediction is more␣

(continues on next page)

2.8. Tutorials 291

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.335193. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.277219. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.684605. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.000000. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.708327. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.899998. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.708327. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.631571. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.447357. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.683243. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.846147. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.551261. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.433172. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.149758. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.760300. The prediction is␣
→˓more likely incorrect.

(continues on next page)

292 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.917817. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.760300. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.697221. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.545832. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.690040. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.845020. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.535061. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.412708. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.412708. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.805245. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.902623. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.707868. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.630991. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.630991. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.620962. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.870044. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.620962. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣

(continues on next page)

2.8. Tutorials 293

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓] is outside the range [0, 1]. Membership value = 0.521215. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.281822. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.906224. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.959079. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.906224. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.822319. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.822319. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.864965. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.941076. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.864965. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.744145. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.744145. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.251775. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.625888. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.000000. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.172844. The prediction is␣

(continues on next page)

294 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.586422. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.000000. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.532322. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.772842. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.566335. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.163103. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.415407. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.744905. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.123111. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.025679. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.431079. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.751744. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.146619. The prediction is␣
→˓more likely incorrect.

(continues on next page)

2.8. Tutorials 295

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.051799. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.496359. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.780230. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.496359. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.045733. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.045733. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.518529. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.766143. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.702363. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.138421. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.999140. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.999625. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.999140. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.998913. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.998370. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.

(continues on next page)

296 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓79166667] is outside the range [0, 1]. Membership value = 0.559096. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.807605. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.559096. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.164603. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.164603. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.379206. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.729108. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.068810. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.377855. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.728518. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.066782. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.224555. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.612278. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.000000. The prediction is␣

(continues on next page)

2.8. Tutorials 297

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.959355. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.980258. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.942419. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.927266. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.890899. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.516105. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.834093. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.516105. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.388765. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.083147. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.356339. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.719130. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.356339. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.

(continues on next page)

298 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.753394. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.876697. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.753394. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.532747. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.532747. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.957302. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.978651. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.935953. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.919098. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.919098. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.973522. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.986761. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.960283. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.949831. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.949831. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.997910. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.999088. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.

(continues on next page)

2.8. Tutorials 299

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓91666667] is outside the range [0, 1]. Membership value = 0.997910. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.996040. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.996040. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.821118. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.910559. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.731677. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.661065. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.661065. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.886690. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.943345. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.886690. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.785307. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.785307. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.194951. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.597475. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.000000. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣

(continues on next page)

300 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.459018. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.763935. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.188527. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.933546. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.971002. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.933546. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.874086. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.874086. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.726992. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.863496. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.726992. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.482722. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.482722. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.604519. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.827427. The prediction is␣
→˓more likely incorrect.

(continues on next page)

2.8. Tutorials 301

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.604519. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.250668. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.250668. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.716278. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.858139. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.574417. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.462421. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.462421. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.795196. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.897598. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.692794. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.611951. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.611951. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.656288. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.828144. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.484432. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.348757. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣

(continues on next page)

302 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓] is outside the range [0, 1]. Membership value = 0.348757. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.825042. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.923655. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.825042. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.668500. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.668500. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.771271. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.921579. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.771271. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.711079. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.566619. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.696148. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.867410. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.696148. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.493580. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.424281. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.566989. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.811050. The prediction is␣

(continues on next page)

2.8. Tutorials 303

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.566989. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.453039. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.179558. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.658673. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.829336. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.488009. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.353275. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.353275. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.854032. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.927016. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.854032. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.723428. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.723428. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.775829. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.902180. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.775829. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.575256. The prediction is more␣
→˓likely incorrect.

(continues on next page)

304 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.575256. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.898866. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.955869. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.898866. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.808378. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.808378. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.687186. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.863499. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.687186. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.407299. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.407299. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.636231. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.841264. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.636231. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.310753. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.310753. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.607021. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣

(continues on next page)

2.8. Tutorials 305

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓] is outside the range [0, 1]. Membership value = 0.865264. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.607021. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.503605. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.255408. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.814544. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.909921. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.885354. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.668131. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.502196. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.683919. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.841960. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.525879. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.401110. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.401110. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.284114. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.687613. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.284114. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣

(continues on next page)

306 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.809766. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.934777. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.809766. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.759704. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.639556. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.888344. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.951277. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.832516. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.813907. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.788442. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.394295. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.735692. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.394295. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.000000. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.840977. The prediction is␣
→˓more likely incorrect.

(continues on next page)

2.8. Tutorials 307

hyperbox-brain, Release 0.1.1

(continued from previous page)

>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.930608. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.840977. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.734961. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.698693. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.478630. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.739315. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.478630. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.012141. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.012141. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 19 with the coordinate [1.05882353 0.75 0.9137931 0.
→˓79166667] is outside the range [0, 1]. Membership value = 0.540064. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 11 with the coordinate [-0.02857143 0.41666667 -0.01818182 0. ␣
→˓] is outside the range [0, 1]. Membership value = 0.770032. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 21 with the coordinate [0.94285714 0.25 1.03636364 0.
→˓91666667] is outside the range [0, 1]. Membership value = 0.540064. The prediction is␣
→˓more likely incorrect.
>>> The testing sample 6 with the coordinate [0.19444444 -0.10526316 0.4137931 0.375␣
→˓] is outside the range [0, 1]. Membership value = 0.128542. The prediction is more␣
→˓likely incorrect.
>>> The testing sample 12 with the coordinate [0.38888889 1.15789474 0.06896552 0.125 ␣
→˓] is outside the range [0, 1]. Membership value = 0.128542. The prediction is more␣
→˓likely incorrect.
100%|| 100/100 [00:16<00:00, 6.08trial/s, best loss: -0.9666666666666666]

[16]: # Building and fitting classifier with best parameters
clf = init_model(space_eval(hp_space_gfmm, best_clf)).fit(X_train, y_train)

Calculating performance on validation set
clf_val_score = accuracy_score(y_test, clf.predict(X_test))
print('Cross-val score: {0:.5f}; testing score: {1:.5f}'.\

format(-trials_clf.best_trial['result']['loss'], clf_val_score))
print('Best parameters:')

(continues on next page)

308 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

print(space_eval(hp_space_gfmm, best_clf))

>>> The testing sample 26 with the coordinate [0.08333333 0.66666667 -0.01724138 0.
→˓04166667] is outside the range [0, 1]. Membership value = 0.478630. The prediction is␣
→˓more likely incorrect.
Cross-val score: 0.96667; testing score: 0.96667
Best parameters:
{'gamma': 6.256443392850102, 'theta': 0.09273471494941352}

[17]: def f_wrap_space_eval(hp_space, trial):
"""
Utility function for more consise optimization history extraction

Parameters:

hp_space : hyperspace from which points are sampled
trial : hyperopt.Trials object

Returns:

: dict(

k: v
), where k - label of hyperparameter, v - value of hyperparameter in trial
"""

return space_eval(hp_space, {k: v[0] for (k, v) in trial['misc']['vals'].items() if␣
→˓len(v) > 0})

def f_unpack_dict(dct):
"""
Unpacks all sub-dictionaries in given dictionary recursively. There should be no␣

→˓duplicated keys
across all nested subdictionaries, or some instances will be lost without warning

Parameters:

dct : dictionary to unpack

Returns:

: unpacked dictionary
"""

res = {}
for (k, v) in dct.items():

if isinstance(v, dict):
res = {**res, **f_unpack_dict(v)}

else:
res[k] = v

return res

2.8. Tutorials 309

hyperbox-brain, Release 0.1.1

[18]: import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.animation import FuncAnimation
import seaborn as sns

[19]: fig0 = plt.figure(figsize=(12, 10))
gs = gridspec.GridSpec(nrows=3, ncols=1, hspace=0.5,wspace=0.3)

================================
Plotting optimization history

ax = fig0.add_subplot(gs[0, 0])
ax.plot(range(1, len(trials_clf) + 1), [-x['result']['loss'] for x in trials_clf],

color='red', marker='.', linewidth=0)

ax.set_xlabel('Iteration', fontsize=12)
ax.set_ylabel('Accuracy', fontsize=12)
ax.set_title('Optimization history', fontsize=14)

ax.grid(True)

================================
Plotting sampled points

samples = [f_unpack_dict(f_wrap_space_eval(hp_space_gfmm, x)) for x in trials_clf.trials]

ax = fig0.add_subplot(gs[1, 0])
sns.histplot(x=[x['gamma'] for x in samples], bins=10, ax=ax)

ax.set_xlabel('$gamma$', fontsize=10)
ax.set_ylabel('Counts', fontsize=10)

ax.grid(True)

ax = fig0.add_subplot(gs[2, 0])
sns.histplot(x=[x['theta'] for x in samples], bins=10, ax=ax)

ax.set_xlabel('$theta$', fontsize=12)
ax.set_ylabel('Counts', fontsize=12)

ax.grid(True)

310 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

nbsphinx-code-borderwhite

Integration of Ensemble Models with Sklearn Pipeline

This example shows how to integrate the random hyperboxes classifier into the Pipeline class implemented by scikit-
learn.

Note that this example is illustrated by using the random hyperboxes model with original onliner learning algorithm
for training base learners. However, it can be used for any ensemble model of GFMM classifiers using other learning
algorithms.

[1]: import warnings
warnings.filterwarnings('ignore')
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM
from hbbrain.numerical_data.ensemble_learner.random_hyperboxes import␣
→˓RandomHyperboxesClassifier

2.8. Tutorials 311

hyperbox-brain, Release 0.1.1

Load dataset.

This example will use the breast cancer dataset in sklearn for illustration purposes.

[2]: from sklearn.datasets import load_breast_cancer

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=0)

Create a pipeline of pre-processing method (i.e., normalization of data in the range of [0, 1]) and a
Random hyperboxes model.

Note: the GFMM classifiers requires the input data in the range of [0, 1].

[5]: theta = 0.1
theta_min = 0.1
base_estimator = OnlineGFMM(theta=theta, theta_min=theta_min)
n_estimators = 50
max_samples = 0.5
max_features = 0.5
class_balanced = False
feature_balanced = False
n_jobs = 4
Init a classifier
rh_clf = RandomHyperboxesClassifier(base_estimator=base_estimator, n_estimators=n_
→˓estimators, max_samples=max_samples, max_features=max_features, class_balanced=class_
→˓balanced, feature_balanced=feature_balanced, n_jobs=n_jobs, random_state=0)

[6]: # create a pipeline including data pre-processing and a classifier
pipe = Pipeline([('scaler', MinMaxScaler()), ('rh_clf', rh_clf)])

Training

[7]: pipe.fit(X_train, y_train)

[7]: Pipeline(steps=[('scaler', MinMaxScaler()),
('rh_clf',
RandomHyperboxesClassifier(base_estimator=OnlineGFMM(C=array([],␣

→˓dtype=float64),
V=array([],␣

→˓dtype=float64),
W=array([],␣

→˓dtype=float64),
theta=0.1,
theta_min=0.1),

max_features=0.5, n_estimators=50,
n_jobs=4, random_state=0))])

312 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Prediction

[8]: acc = pipe.score(X_test, y_test)
print(f'Testing accuracy = {acc * 100: .2f}%')

Testing accuracy = 96.49%

2.8.7 Integration with sklearn hyperparameter optimisation

Integration of Single Hyperbox-based Estimators with Grid-Search and Random-Search in sklearn

This example shows how to integrate the GFMM classifier with the Grid Search Cross-Validation and Random Search
Cross-Validation functionalities implemented by scikit-learn

Note that this example will use the original online learning algorithm of GFMM model for demonstration of the inte-
gration of Grid Search and Random Search with hyperbox-based model. However, this characteristic can be similarly
applied for all of the other hyperbox-based machine learning algorithms.

[1]: import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

Load Iris dataset, normalize it into the range of [0, 1] and build training and testing datasets

[2]: from sklearn.datasets import load_iris

[3]: df = load_iris()
X = df.data
y = df.target

[4]: scaler = MinMaxScaler()
X = scaler.fit_transform(X)

[5]: X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=0)

1. Using Grid Search with 5-fold cross-validation

[6]: import numpy as np
from sklearn.metrics import accuracy_score

[7]: parameters = {'theta': np.arange(0.05, 1.01, 0.05), 'theta_min':[1], 'gamma':[0.5, 1, 2,␣
→˓4, 8, 16]}

2.8. Tutorials 313

hyperbox-brain, Release 0.1.1

[8]: onln_gfmm = OnlineGFMM()
clf_grid_search = GridSearchCV(onln_gfmm, parameters, cv=5, scoring='accuracy',␣
→˓refit=True)

[9]: clf_grid_search.fit(X_train, y_train)
print("Best average score = ", clf_grid_search.best_score_)
print("Best params: ", clf_grid_search.best_params_)

Best average score = 0.9583333333333334
Best params: {'gamma': 0.5, 'theta': 0.3, 'theta_min': 1}

[10]: best_gfmm_grid_search = clf_grid_search.best_estimator_

[11]: # Testing the performance on the test set
y_pred = best_gfmm_grid_search.predict(X_test)

[12]: acc_grid_search = accuracy_score(y_test, y_pred)
print(f'Accuracy (grid-search) = {acc_grid_search * 100: .2f}%')

Accuracy (grid-search) = 96.67%

[13]: # Try another way to create the best classifier
best_gfmm_grid_search_2 = OnlineGFMM(**clf_grid_search.best_params_)
#best_gfmm_grid_search_2.set_params(**clf_grid_search.best_params_)

[14]: # Training
best_gfmm_grid_search_2.fit(X_train, y_train)

[14]: OnlineGFMM(C=array([2, 1, 0, 1, 2, 2, 1, 2, 0, 0, 1, 0, 2, 2, 1]),
V=array([[0.44444444, 0.29166667, 0.6440678 , 0.70833333],

[0.25 , 0.125 , 0.42372881, 0.375],
[0.11111111, 0.45833333, 0.03389831, 0.04166667],
[0.16666667, 0. , 0.33898305, 0.375],
[0.38888889, 0.08333333, 0.68221339, 0.58333333],
[0.77777778, 0.41666667, 0.83050847, 0.70833333],
[0.47222222, 0.375 , 0.55932203, 0.5],
[0.166666...
[0.16666667, 0.20833333, 0.59322034, 0.66666667],
[0.19444444, 0.58333333, 0.10169492, 0.08333333],
[0.41666667, 1. , 0.11864407, 0.125],
[0.55555556, 0.20833333, 0.66101695, 0.58333333],
[0.05555556, 0.125 , 0.05084746, 0.08333333],
[0.94444444, 0.41666667, 1. , 0.91666667],
[1. , 0.75 , 0.96610169, 0.875],
[0.44444444, 0.5 , 0.6440678 , 0.70833333]]),

gamma=0.5, theta=0.3, theta_min=0.3)

[15]: # predict
y_pred_2 = best_gfmm_grid_search_2.predict(X_test)

[16]: acc_grid_search_2 = accuracy_score(y_test, y_pred_2)
print(f'Accuracy (grid-search) = {acc_grid_search_2 * 100: .2f}%')

314 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Accuracy (grid-search) = 96.67%

2. Using Random Search with 5-fold cross-validation

[17]: # Using random search with only 20 random combinations of parameters
onln_gfmm_rd_search = OnlineGFMM()
clf_rd_search = RandomizedSearchCV(onln_gfmm_rd_search, parameters, n_iter=20, cv=5,␣
→˓random_state=0)

[18]: clf_rd_search.fit(X_train, y_train)
print("Best average score = ", clf_rd_search.best_score_)
print("Best params: ", clf_rd_search.best_params_)

Best average score = 0.9583333333333334
Best params: {'theta_min': 1, 'theta': 0.3, 'gamma': 2}

[19]: best_gfmm_rd_search = clf_rd_search.best_estimator_

[20]: # Testing the performance on the test set
y_pred_rd_search = best_gfmm_rd_search.predict(X_test)

[21]: acc_rd_search = accuracy_score(y_test, y_pred_rd_search)
print(f'Accuracy (random-search) = {acc_rd_search * 100: .2f}%')

Accuracy (random-search) = 96.67%

Try to show explanation for an input sample

[22]: sample_need_explain = 10
y_pred_input_0, mem_val_classes, min_points_classes, max_points_classes = best_gfmm_rd_
→˓search.get_sample_explanation(X_test[sample_need_explain], X_test[sample_need_explain])

[23]: print("Predicted class for sample X = %s is %d and real class is %d" % (X_test[sample_
→˓need_explain], y_pred_input_0, y_test[sample_need_explain]))

Predicted class for sample X = [0.5 0.25 0.77966102 0.54166667] is 2 and␣
→˓real class is 2

[24]: print("Membership values:")
for key, val in mem_val_classes.items():

print("Class %d has the maximum membership value = %f" % (key, val))

for key in min_points_classes:
print("Class %d has the representative hyperbox: V = %s and W = %s" % (key, min_

→˓points_classes[key], max_points_classes[key]))

Membership values:
Class 0 has the maximum membership value = 0.000000
Class 1 has the maximum membership value = 0.805085

(continues on next page)

2.8. Tutorials 315

hyperbox-brain, Release 0.1.1

(continued from previous page)

Class 2 has the maximum membership value = 0.916667
Class 0 has the representative hyperbox: V = [0.11111111 0.45833333 0.03389831 0.
→˓04166667] and W = [0.38888889 0.75 0.11864407 0.20833333]
Class 1 has the representative hyperbox: V = [0.25 0.125 0.42372881 0.375 ␣
→˓] and W = [0.5 0.41666667 0.68220339 0.625]
Class 2 has the representative hyperbox: V = [0.38888889 0.08333333 0.68221339 0.
→˓58333333] and W = [0.66666667 0.33333333 0.81355932 0.79166667]

Show explanation results by parallel coordinates

[25]: # Create a parallel coordinates graph
best_gfmm_rd_search.show_sample_explanation(X_test[sample_need_explain], X_test[sample_
→˓need_explain], min_points_classes, max_points_classes, y_pred_input_0, file_path="par_
→˓cord/iris_par_cord.html")

[26]: # Load parallel coordinates to display on the notebook
from IPython.display import IFrame
We load the parallel coordinates from GitHub here for demostration in readthedocs
On the local notebook, we only need to load from the graph storing at 'par_cord/iris_
→˓par_cord.html'
IFrame('https://uts-caslab.github.io/hyperbox-brain/docs/tutorials/par_cord/iris_par_
→˓cord.html', width=820, height=520)

[26]: <IPython.lib.display.IFrame at 0x202278d7d68>

Integration of Algorithms for Mixed-Attribute Data with Hyper-parameter Optimisation in Sklearn

This example shows how to integrate the GFMM classifiers for mixed-attribute with the Random Search Cross-
Validation functionality implemented by scikit-learn

Note that this example uses the extended improved incremental learning algorithm and Random Search for illustration.
However, other learning algorithms for mixed-attribute data in the library can be used similarly for any hyper-parameter
tunning methods.

[1]: import os
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import train_test_split
from hbbrain.mixed_data.eiol_gfmm import ExtendedImprovedOnlineGFMM

316 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Load dataset.

This example uses the japanese_credit dataset for illustration purposes. The continuous features in this dataset were
normalised into the range of [0, 1], while categorical features were kept unchanged. Note that the numerical features
in training and testing datasets must be in the range of [0, 1] because the GFMM classifiers require features in the unit
cube.

[2]: from pathlib import Path
this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
project_dir = Path(this_notebook_dir).parent.parent

[3]: training_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_train.csv"))
testing_data_file = os.path.join(project_dir, Path("dataset/japanese_credit_test.csv"))

[4]: df_train = pd.read_csv(training_data_file, header=None)
df_test = pd.read_csv(testing_data_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1].astype(int)

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1].astype(int)

Using Random Search with 5-fold cross-validation

[5]: parameters = {'theta': np.arange(0.05, 1.01, 0.05), 'delta':np.arange(0.05, 1.01, 0.05),
→˓'alpha':np.arange(0.1, 1.1, 0.1), 'gamma':[0.5, 1, 2, 4, 8, 16]}

[6]: # Using random search with only 20 random combinations of parameters
eiol_gfmm_rd_search = ExtendedImprovedOnlineGFMM()
clf_rd_search = RandomizedSearchCV(eiol_gfmm_rd_search, parameters, n_iter=20, cv=5,␣
→˓random_state=0)

[7]: # create parameters in the fit function apart from X and y
we use the expansion condition for categorical featurers using the average entropy␣
→˓changing values over all categorical features
fit_params={'categorical_features':[0, 3, 4, 5, 6, 8, 9, 11, 12], 'type_cat_expansion':1}
clf_rd_search.fit(Xtr, ytr, **fit_params)

[7]: RandomizedSearchCV(cv=5,
estimator=ExtendedImprovedOnlineGFMM(C=array([], dtype=float64),

D=array([], dtype=float64),
N_samples=array([],␣

→˓dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64)),

n_iter=20,
param_distributions={'alpha': array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.

(continues on next page)

2.8. Tutorials 317

hyperbox-brain, Release 0.1.1

(continued from previous page)

→˓7, 0.8, 0.9, 1.]),
'delta': array([0.05, 0.1 , 0.15, 0.2 , 0.25, 0.

→˓3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,
0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.]),

'gamma': [0.5, 1, 2, 4, 8, 16],
'theta': array([0.05, 0.1 , 0.15, 0.2 , 0.25, 0.

→˓3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,
0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.])},

random_state=0)

[8]: print("Best average score = ", clf_rd_search.best_score_)
print("Best params: ", clf_rd_search.best_params_)

Best average score = 0.8209672184355729
Best params: {'theta': 0.5, 'gamma': 2, 'delta': 0.15000000000000002, 'alpha': 0.8}

[9]: best_gfmm_rd_search = clf_rd_search.best_estimator_

[10]: # Testing the performance on the test set
y_pred_rd_search = best_gfmm_rd_search.predict(Xtest)

[11]: acc_rd_search = accuracy_score(ytest, y_pred_rd_search)
print(f'Accuracy (random-search) = {acc_rd_search * 100: .2f}%')

Accuracy (random-search) = 79.39%

Integration of Ensemble Models with Hyper-parameter Optimisation in Sklearn

This example shows how to integrate the random hyperboxes classifier with the Random Search Cross-Validation
functionality implemented by scikit-learn.

Note that this example uses the random hyperboxes model and Random Search for illustration. However, other
hyperbox-based ensemble learning algorithms in the library can be used similarly for any hyper-parameter tunning
methods.

[1]: import warnings
warnings.filterwarnings('ignore')
import os
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import train_test_split
from hbbrain.numerical_data.ensemble_learner.random_hyperboxes import␣
→˓RandomHyperboxesClassifier
from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

318 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Load dataset, normalize numerical features into the range of [0, 1] and build training and testing
datasets.

This example will use the breast cancer dataset in sklearn for illustration purposes.

[2]: from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler

[3]: df = load_breast_cancer()
X = df.data
y = df.target

[4]: scaler = MinMaxScaler()
X = scaler.fit_transform(X)

[5]: X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=0)

Using Random Search with 5-fold cross-validation.

[6]: parameters = {'n_estimators': [20, 30, 50, 100, 200, 500],
'max_samples': [0.2, 0.3, 0.4, 0.5, 0.6],
'max_features' : [0.2, 0.3, 0.4, 0.5, 0.6],
'class_balanced' : [True, False],
'feature_balanced' : [True, False],
'n_jobs' : [4],
'random_state' : [0],
'base_estimator__theta' : np.arange(0.05, 0.61, 0.05),
'base_estimator__gamma' : [0.5, 1, 2, 4, 8, 16]}

[7]: # Init base learner. This example uses the original online learning algorithm to train a␣
→˓GFMM classifier
base_estimator = OnlineGFMM()

[8]: # Using random search with only 40 random combinations of parameters
random_hyperboxes_clf = RandomHyperboxesClassifier(base_estimator=base_estimator)
clf_rd_search = RandomizedSearchCV(random_hyperboxes_clf, parameters, n_iter=40, cv=5,␣
→˓random_state=0)

[9]: clf_rd_search.fit(X_train, y_train)

[9]: RandomizedSearchCV(cv=5,
estimator=RandomHyperboxesClassifier(base_

→˓estimator=OnlineGFMM(C=array([], dtype=float64),
␣

→˓V=array([], dtype=float64),
␣

→˓W=array([], dtype=float64))),
n_iter=40,
param_distributions={'base_estimator__gamma': [0.5, 1, 2, 4,

8, 16],
(continues on next page)

2.8. Tutorials 319

hyperbox-brain, Release 0.1.1

(continued from previous page)

'base_estimator__theta': array([0.05, 0.1 , 0.15,
→˓ 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 , 0.55,

0.6]),
'class_balanced': [True, False],
'feature_balanced': [True, False],
'max_features': [0.2, 0.3, 0.4, 0.5,

0.6],
'max_samples': [0.2, 0.3, 0.4, 0.5,

0.6],
'n_estimators': [20, 30, 50, 100, 200,

500],
'n_jobs': [4], 'random_state': [0]},

random_state=0)

[10]: print("Best average score = ", clf_rd_search.best_score_)
print("Best params: ", clf_rd_search.best_params_)

Best average score = 0.9714285714285715
Best params: {'random_state': 0, 'n_jobs': 4, 'n_estimators': 500, 'max_samples': 0.6,
→˓'max_features': 0.5, 'feature_balanced': True, 'class_balanced': False, 'base_
→˓estimator__theta': 0.15000000000000002, 'base_estimator__gamma': 16}

[12]: best_gfmm_rd_search = clf_rd_search.best_estimator_

[13]: # Testing the performance on the test set
y_pred_rd_search = best_gfmm_rd_search.predict(X_test)

[14]: acc_rd_search = accuracy_score(y_test, y_pred_rd_search)
print(f'Accuracy (random-search) = {acc_rd_search * 100: .2f}%')

Accuracy (random-search) = 96.49%

2.8.8 Other learning abilities of GFMM models

Learning from labelled and unlabelled data using GFMM

This example shows how to use various learning algorithms of the general fuzzy min-max (GFMM) classifier to learning
from the datasets including both labelled and unlabelled samples.

Loading the labelled and unlabelled samples from an example dataset in the folder ‘dataset’

File ‘syn_num_train.csv’ contains all labelled samples for a training dataset. File
‘syn_num_train_labeled_unlabelled_mix.csv’ contains both labelled and unlabelled samples which are created
from the ‘syn_num_train.csv’ file by eliminating randomly the class labels of several samples. File ‘syn_num_test.csv’
contains 1000 testing samples all of which are labelled.

This example compares a trained GFMM model learning from fully labelled training data and a GFMM model trained
on labelled and unlabelled data based on the resulting hyperboxes and their classification performance.

320 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')

[3]: import pandas as pd

[4]: # Get the path to the this jupyter notebook file
this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[4]: 'C:\\hyperbox-brain\\examples\\other_learning_ability_gfmm'

[5]: # Get the home folder of the hyperbox-brain toolbox
from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[5]: WindowsPath('C:/hyperbox-brain')

[6]: # Create the path to the training and testing files
labelled_training_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
labelled_unlabelled_training_file = os.path.join(project_dir, Path("dataset/syn_num_
→˓train_labeled_unlabelled_mix.csv"))
testing_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))

[7]: labelled_training_file

[7]: 'C:\\hyperbox-brain\\dataset\\syn_num_train.csv'

[8]: labelled_unlabelled_training_file

[8]: 'C:\\hyperbox-brain\\dataset\\syn_num_train_labeled_unlabelled_mix.csv'

[9]: testing_file

[9]: 'C:\\hyperbox-brain\\dataset\\syn_num_test.csv'

[10]: # Create training and testing data sets
df_labelled_train = pd.read_csv(labelled_training_file, header=None)
df_labelled_unlabelled_train = pd.read_csv(labelled_unlabelled_training_file,␣
→˓header=None)
df_test = pd.read_csv(testing_file, header=None)

Xy_labelled_train = df_labelled_train.to_numpy()
Xy_lablled_unlabelled_train = df_labelled_unlabelled_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr_labelled = Xy_labelled_train[:, :-1]
ytr_labelled = Xy_labelled_train[:, -1]

(continues on next page)

2.8. Tutorials 321

hyperbox-brain, Release 0.1.1

(continued from previous page)

Xtr_labelled_unlabelled = Xy_lablled_unlabelled_train[:, :-1]
ytr_labelled_unlabelled = Xy_lablled_unlabelled_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

[11]: import numpy as np
from matplotlib import pyplot

[12]: class_label = ['Unlabelled class', '1', '2']
n_missing = np.isnan(ytr_labelled_unlabelled).sum()
n_class_1 = (ytr_labelled_unlabelled == 1).sum()
n_class_2 = (ytr_labelled_unlabelled == 2).sum()
class_distribution = [n_missing, n_class_1, n_class_2]

[13]: # plot the distribution
pyplot.bar(class_label, class_distribution)
pyplot.xlabel('Class labels')
pyplot.ylabel('Number of samples')
pyplot.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Showing samples corresponding to missing values and class labels

[14]: import matplotlib.pyplot as plt
colours = ['red', 'blue', 'green']
labels = ['Unlabelled class', 'class 1', 'class 2']
classes = np.unique(ytr_labelled_unlabelled)
fig1, ax1 = plt.subplots()
for i in classes:

if np.isnan(i) == True:
data = Xtr_labelled_unlabelled[np.isnan(ytr_labelled_unlabelled)]
color = colours[0]
label = labels[0]

else:
data = Xtr_labelled_unlabelled[ytr_labelled_unlabelled == i]
color = colours[int(i)]
label = labels[int(i)]

ax1.scatter(
data[:, 0],
data[:, 1],
color=color,
label=label

)

ax1.set_xlabel('X1')
ax1.set_ylabel('X2')

(continues on next page)

322 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

ax1.legend(loc='lower right')

plt.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Next, we will build general fuzzy min-max neural networks using various learning algorithms from unlabelled and
labelled data.

1. Original incremental learning algorithm for GFMM

[15]: from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

[16]: # Initializing parameters
theta = 0.2
theta_min = 0.2
gamma = 1
is_draw = False

1.1 Training a GFMM model using the original incremental learning algorithm on a fully labelled
training set

[17]: onln_gfmm_clf_labelled = OnlineGFMM(theta=theta, theta_min=theta_min, gamma=gamma, is_
→˓draw=is_draw)
onln_gfmm_clf_labelled.fit(Xtr_labelled, ytr_labelled)

[17]: OnlineGFMM(C=array([1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1]),
V=array([[0.334755 , 0.54567],

[0.60358 , 0.413255],
[0.71185 , 0.67467],
[0.66395 , 0.48815495],
[0.15331 , 0.03],
[0.17884 , 0.26124],
[0.50058 , 0.62858],
[0.13903 , 0.44711],
[0.03 , 0.28498],
[0.56487 , 0.17003],
[0.49255 , 0.38293],
[0.39868 , 0.4497275],
[0.30123 , 0.7592],
[0.581545 , 0.54123],
[0.25929 , 0.81558],
[0.6...
[0.83355 , 0.65933],
[0.33484 , 0.22603],
[0.37033 , 0.44704],
[0.68491 , 0.7921],
[0.3197 , 0.62174],

(continues on next page)

2.8. Tutorials 323

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.14737 , 0.48239],
[0.76254 , 0.34978],
[0.59077 , 0.4497175],
[0.581535 , 0.54842],
[0.47952 , 0.91371],
[0.66394 , 0.62857],
[0.25929 , 0.81558],
[0.815 , 0.413245],
[0.67906 , 0.85165],
[0.36745 , 0.6747],
[0.80583 , 0.43242],
[0.80969 , 0.2317],
[0.24341 , 0.2432],
[0.91185 , 0.48697]]),

theta=0.2, theta_min=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[18]: onln_gfmm_clf_labelled.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries on a fully labelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[19]: print("Number of hyperboxes = ", onln_gfmm_clf_labelled.get_n_hyperboxes())

Number of hyperboxes = 22

Prediction

[20]: from sklearn.metrics import accuracy_score

[21]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled = onln_gfmm_clf_labelled.predict(Xtest)
acc = accuracy_score(ytest, y_pred_labelled)
print(f'Accuracy (trained on a fully labelled dataset) = {acc * 100: .2f}%')

Accuracy (trained on a fully labelled dataset) = 86.10%

[22]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
onln_gfmm_clf_labelled.predict_proba(Xtest[0:10])

[22]: array([[0.50692844, 0.49307156],
[0.5067865 , 0.4932135],
[0.48419044, 0.51580956],
[0.51756754, 0.48243246],
[0.49898253, 0.50101747],
[0.50386085, 0.49613915],

(continues on next page)

324 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.49633584, 0.50366416],
[0.44839455, 0.55160545],
[0.4878477 , 0.5121523],
[0.48650536, 0.51349464]])

[23]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
onln_gfmm_clf_labelled.predict_with_membership(Xtest[0:10])

[23]: array([[1. , 0.972665],
[1. , 0.9732175],
[0.9387 , 1.],
[1. , 0.932115],
[0.986965 , 0.99099],
[1. , 0.98467495],
[0.98545 , 1.],
[0.81289 , 1.],
[0.93918 , 0.98597],
[0.94744 , 1.]])

1.2 Training a GFMM model using the original incremental learning algorithm on a labelled and un-
labelled training set

[24]: onln_gfmm_clf_labelled_unlabelled = OnlineGFMM(theta=theta, theta_min=theta_min,␣
→˓gamma=gamma, is_draw=is_draw)
onln_gfmm_clf_labelled_unlabelled.fit(Xtr_labelled_unlabelled, ytr_labelled_unlabelled)

[24]: OnlineGFMM(C=array([1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1]),
V=array([[0.334755 , 0.54567],

[0.60358 , 0.413255],
[0.71185 , 0.67467],
[0.66395 , 0.48815495],
[0.15331 , 0.03],
[0.17884 , 0.26124],
[0.50058 , 0.62858],
[0.13903 , 0.44711],
[0.03 , 0.28498],
[0.56487 , 0.17003],
[0.49255 , 0.38293],
[0.39868 , 0.439005],
[0.30123 , 0.7592],
[0.57962 , 0.56029],
[0.25929 , 0.81558],
[0.665...
[0.83355 , 0.65933],
[0.33484 , 0.22603],
[0.37033 , 0.44704],
[0.68491 , 0.7921],
[0.3197 , 0.62174],
[0.14737 , 0.48239],
[0.76254 , 0.34978],

(continues on next page)

2.8. Tutorials 325

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.5843 , 0.438995],
[0.59235 , 0.54842],
[0.47952 , 0.91371],
[0.66394 , 0.62857],
[0.25929 , 0.81558],
[0.815 , 0.413245],
[0.67906 , 0.85165],
[0.36745 , 0.6747],
[0.80583 , 0.43242],
[0.80969 , 0.2317],
[0.24341 , 0.2432],
[0.91185 , 0.48697]]),

theta=0.2, theta_min=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[25]: onln_gfmm_clf_labelled_unlabelled.draw_hyperbox_and_boundary("The trained GFMM␣
→˓classifier and its decision boundaries on a labelled and unlabelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[26]: print("Number of hyperboxes = ", onln_gfmm_clf_labelled_unlabelled.get_n_hyperboxes())

Number of hyperboxes = 22

We can see that in this case all unlabelled samples were absorbed and assigned to suitable class labels to form hyper-
boxes. All unlaballed samples located in the areas dominated by samples belonging to only one class were classified
correctly to the same class. Only samples in the overlapping areas between two classes resulted in little difference in
the trained GFMM models between the model trained on a fully labelled dataset and the model trained on an unlabelled
and labelled dataset.

Prediction

[27]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled_unlabelled = onln_gfmm_clf_labelled_unlabelled.predict(Xtest)
acc = accuracy_score(ytest, y_pred_labelled_unlabelled)
print(f'Accuracy (trained on a mixed labelled and unlabelled dataset) = {acc * 100: .2f}%
→˓')

Accuracy (trained on a mixed labelled and unlabelled dataset) = 86.00%

[28]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
onln_gfmm_clf_labelled_unlabelled.predict_proba(Xtest[0:10])

[28]: array([[0.50692844, 0.49307156],
[0.50955544, 0.49044456],
[0.48419044, 0.51580956],
[0.51705239, 0.48294761],

(continues on next page)

326 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.50170709, 0.49829291],
[0.50386085, 0.49613915],
[0.49633584, 0.50366416],
[0.44839455, 0.55160545],
[0.49076276, 0.50923724],
[0.48650536, 0.51349464]])

[29]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
onln_gfmm_clf_labelled_unlabelled.predict_with_membership(Xtest[0:10])

[29]: array([[1. , 0.972665],
[1. , 0.962495],
[0.9387 , 1.],
[1. , 0.93404],
[0.99778 , 0.99099],
[1. , 0.98467495],
[0.98545 , 1.],
[0.81289 , 1.],
[0.943965 , 0.9795],
[0.94744 , 1.]])

2. Improved online learning algorithm for GFMM (IOL-GFMM)

[30]: from hbbrain.numerical_data.incremental_learner.iol_gfmm import ImprovedOnlineGFMM

2.1 Training a GFMM model using the improved online learning algorithm on a fully labelled training
set

[31]: iol_gfmm_clf_labelled = ImprovedOnlineGFMM(theta=theta, gamma=gamma, is_draw=is_draw)
iol_gfmm_clf_labelled.fit(Xtr_labelled, ytr_labelled)

[31]: ImprovedOnlineGFMM(C=array([1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1,␣
→˓1, 1,

2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 2, 2, 2, 1]),

N_samples=array([29, 3, 17, 13, 12, 29, 11, 8, 2, 9, 27, 1, 10, ␣
→˓1, 1, 4, 13,

1, 3, 3, 13, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1,
1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1]),

V=array([[0.33593, 0.55942],
[0.77074, 0.48234],
[0.71185, 0.67467],
[0.64586, 0.41654],
[0.15331, 0...
[0.65327, 0.51585],
[0.57962, 0.57837],
[0.66562, 0.36352],
[0.68408, 0.43479],

(continues on next page)

2.8. Tutorials 327

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.70743, 0.50325],
[0.70647, 0.65933],
[0.28822, 0.62174],
[0.24341, 0.2432],
[0.34044, 0.55512],
[0.75421, 0.41466],
[0.55819, 0.39125],
[0.59655, 0.56029],
[0.71946, 0.45413],
[0.36745, 0.52006],
[0.91185, 0.48697],
[0.6504 , 0.51624],
[0.56487, 0.17003],
[0.59235, 0.54123],
[0.55763, 0.43813]]),

theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[32]: iol_gfmm_clf_labelled.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries on a fully labelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[33]: print("Number of hyperboxes = ", iol_gfmm_clf_labelled.get_n_hyperboxes())

Number of hyperboxes = 50

Prediction

[34]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled_iol = iol_gfmm_clf_labelled.predict(Xtest)
acc_iol = accuracy_score(ytest, y_pred_labelled_iol)
print(f'Accuracy (trained on a fully labelled dataset) = {acc_iol * 100: .2f}%')

Accuracy (trained on a fully labelled dataset) = 87.90%

[35]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
iol_gfmm_clf_labelled.predict_proba(Xtest[0:10])

[35]: array([[0.49576188, 0.50423812],
[0.48655857, 0.51344143],
[0.48198338, 0.51801662],
[0.50614609, 0.49385391],
[0.49059122, 0.50940878],
[0.50281577, 0.49718423],
[0.49979902, 0.50020098],

(continues on next page)

328 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.44839455, 0.55160545],
[0.49441327, 0.50558673],
[0.48773256, 0.51226744]])

[36]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
iol_gfmm_clf_labelled.predict_with_membership(Xtest[0:10])

[36]: array([[0.98319, 1.],
[0.94134, 0.99335],
[0.93044, 1.],
[0.98576, 0.96182],
[0.96306, 1.],
[1. , 0.9888],
[0.98227, 0.98306],
[0.81289, 1.],
[0.9779 , 1.],
[0.94744, 0.9951]])

2.2 Training a GFMM model using the improved online learning algorithm on a labelled and unlabelled
training set

[37]: iol_gfmm_clf_labelled_unlabelled = ImprovedOnlineGFMM(theta=theta, gamma=gamma, is_
→˓draw=is_draw)
iol_gfmm_clf_labelled_unlabelled.fit(Xtr_labelled_unlabelled, ytr_labelled_unlabelled)

[37]: ImprovedOnlineGFMM(C=array([1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1,␣
→˓2, 1,

1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2,
2, 2, 2, 1, 2, 2, 1]),

N_samples=array([22, 3, 15, 15, 7, 3, 22, 10, 11, 1, 10, 23, 1,␣
→˓13, 1, 1, 4,

7, 7, 3, 3, 3, 9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1,
2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1]),

V=array([[0.33593, 0.55942],
[0.77074, 0.48234],
[0.71185, 0.67467],
[0.64586, 0.41654],
[0.1533...
[0.76369, 0.48412],
[0.80583, 0.43242],
[0.80969, 0.31878],
[0.65327, 0.51585],
[0.57962, 0.57837],
[0.66562, 0.36352],
[0.68408, 0.43479],
[0.70743, 0.50325],
[0.70647, 0.65933],
[0.28822, 0.62174],
[0.34044, 0.55512],
[0.75421, 0.41466],

(continues on next page)

2.8. Tutorials 329

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.55819, 0.39125],
[0.59655, 0.56029],
[0.71946, 0.45413],
[0.91185, 0.48697],
[0.6504 , 0.51624],
[0.56487, 0.17003],
[0.55763, 0.43813]]),

theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[38]: iol_gfmm_clf_labelled_unlabelled.draw_hyperbox_and_boundary("The trained GFMM classifier␣
→˓and its decision boundaries on a labelled and unlabelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

We can see that the IOL-GFMM algorithm can also learn from a labelled and unlabelled dataset. Hyperboxes which
have been formed from unlabelled samples will be assigned a suitable class when they cover new labelled samples. If
not, these hyperboxes will create unlabelled clusters. In this case, all unlabelled hyperboxes were assigned correspond-
ing labels. The classification performance of the model trained on both labelled and unlabelled samples is slightly less
than that of the model trained on a fully labelled dataset.

[39]: print("Number of hyperboxes = ", iol_gfmm_clf_labelled_unlabelled.get_n_hyperboxes())

Number of hyperboxes = 51

Prediction

[40]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled_unlabelled_iol = iol_gfmm_clf_labelled_unlabelled.predict(Xtest)
acc_iol_labelled_unlabelled = accuracy_score(ytest, y_pred_labelled_unlabelled_iol)
print(f'Accuracy (trained on a mixed labelled and unlabelled dataset) = {acc_iol_
→˓labelled_unlabelled * 100: .2f}%')

Accuracy (trained on a mixed labelled and unlabelled dataset) = 87.50%

[41]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
iol_gfmm_clf_labelled_unlabelled.predict_with_membership(Xtest[0:10])

[41]: array([[0.98319, 1.],
[0.98204, 0.99335],
[0.93044, 1.],
[0.97525, 1.],
[0.96306, 1.],
[1. , 0.9888],
[0.98227, 0.98306],
[0.81937, 1.],

(continues on next page)

330 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.9779 , 1.],
[0.94744, 1.]])

[42]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
iol_gfmm_clf_labelled_unlabelled.predict_proba(Xtest[0:10])

[42]: array([[0.49576188, 0.50423812],
[0.49713727, 0.50286273],
[0.48198338, 0.51801662],
[0.49373497, 0.50626503],
[0.49059122, 0.50940878],
[0.50281577, 0.49718423],
[0.49979902, 0.50020098],
[0.45035919, 0.54964081],
[0.49441327, 0.50558673],
[0.48650536, 0.51349464]])

3. Accelerated agglomerative learning algorithm for GFMM (AGGLO-2)

[43]: from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM

3.1 Training a GFMM model using the accelerated agglomerative learning algorithm on a fully labelled
training set

[44]: # Initialise parameters
theta = 0.2
gamma = 1
min_simil = 0
simil_measure = 'long'
is_draw = False

[45]: agglo2_clf_labelled = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_
→˓simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)
agglo2_clf_labelled.fit(Xtr_labelled, ytr_labelled)

[45]: AccelAgglomerativeLearningGFMM(min_simil=0, simil_measure='long', theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[46]: agglo2_clf_labelled.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries on a fully labelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2.8. Tutorials 331

hyperbox-brain, Release 0.1.1

[47]: print("Number of hyperboxes = ", agglo2_clf_labelled.get_n_hyperboxes())

Number of hyperboxes = 43

Prediction

[48]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled_agglo2 = agglo2_clf_labelled.predict(Xtest)
acc_agglo2_labelled = accuracy_score(ytest, y_pred_labelled_agglo2)
print(f'Accuracy (trained on a fully labelled dataset) = {acc_agglo2_labelled * 100: .2f}
→˓%')

Accuracy (trained on a fully labelled dataset) = 87.30%

[49]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
agglo2_clf_labelled.predict_with_membership(Xtest[0:10])

[49]: array([[0.98924, 0.98094],
[0.98112, 0.96336],
[0.93044, 0.99767],
[0.98576, 0.93404],
[0.96956, 1.],
[0.9989 , 0.9888],
[0.98227, 0.98306],
[0.81289, 1.],
[0.9779 , 1.],
[0.94744, 0.9951]])

[50]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
agglo2_clf_labelled.predict_proba(Xtest[0:10])

[50]: array([[0.50210641, 0.49789359],
[0.50456677, 0.49543323],
[0.48256583, 0.51743417],
[0.51347015, 0.48652985],
[0.49227239, 0.50772761],
[0.50254062, 0.49745938],
[0.49979902, 0.50020098],
[0.44839455, 0.55160545],
[0.49441327, 0.50558673],
[0.48773256, 0.51226744]])

332 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

3.2 Training a GFMM model using the accelerated agglomerative learning algorithm on a mixed la-
belled and unlabelled training set

[51]: agglo2_clf_labelled_unlabelled = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma,
→˓ min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)
agglo2_clf_labelled_unlabelled.fit(Xtr_labelled_unlabelled, ytr_labelled_unlabelled)

[51]: AccelAgglomerativeLearningGFMM(min_simil=0, simil_measure='long', theta=0.2)

[52]: agglo2_clf_labelled_unlabelled.draw_hyperbox_and_boundary("The trained GFMM classifier␣
→˓and its decision boundaries on a mixed labelled and unlabelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[53]: print("Number of hyperboxes = ", agglo2_clf_labelled_unlabelled.get_n_hyperboxes())

Number of hyperboxes = 42

Similarly to the original online learning algorithm and improved online learning algorithm, the accelerated agglomer-
ative learning algorithm is also capable of learning from a mixed labelled and unlabelled dataset. Unlabelled samples
located in the regions surrounded by many samples belonging to only one class were correctly assigned the same class
label. The difference between two models trained on the fully labelled dataset and the mixed labelled and unlabelled
dataset happends in the unlabelled samples within the overlapping regions between two classes.

Prediction

[54]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled_unlabelled_agglo2 = agglo2_clf_labelled_unlabelled.predict(Xtest)
acc_agglo2_labelled_unlabelled = accuracy_score(ytest, y_pred_labelled_unlabelled_agglo2)
print(f'Accuracy (trained on a mixed labelled and unlabelled dataset) = {acc_agglo2_
→˓labelled_unlabelled * 100: .2f}%')

Accuracy (trained on a mixed labelled and unlabelled dataset) = 87.00%

[55]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
agglo2_clf_labelled_unlabelled.predict_with_membership(Xtest[0:10])

[55]: array([[0.98924, 0.98094],
[0.98112, 0.96336],
[0.93044, 0.99767],
[0.98576, 0.93404],
[0.96956, 1.],
[0.99933, 0.9888],
[0.97989, 0.98306],
[0.81289, 1.],
[0.9779 , 1.],
[0.94744, 0.9951]])

[56]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
agglo2_clf_labelled_unlabelled.predict_proba(Xtest[0:10])

2.8. Tutorials 333

hyperbox-brain, Release 0.1.1

[56]: array([[0.50210641, 0.49789359],
[0.50456677, 0.49543323],
[0.48256583, 0.51743417],
[0.51347015, 0.48652985],
[0.49227239, 0.50772761],
[0.50264822, 0.49735178],
[0.49919254, 0.50080746],
[0.44839455, 0.55160545],
[0.49441327, 0.50558673],
[0.48773256, 0.51226744]])

4. Agglomerative learning algorithm will a full similarity matrix for GFMM (AGGLO-SM)

[57]: from hbbrain.numerical_data.batch_learner.agglo_gfmm import AgglomerativeLearningGFMM

4.1 Training a GFMM model using the agglomerative learning algorithm with a full similarity matrix
on a fully labelled training set

[58]: agglo_sm_clf_labelled = AgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_
→˓simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)
agglo_sm_clf_labelled.fit(Xtr_labelled, ytr_labelled)

[58]: AgglomerativeLearningGFMM(min_simil=0, simil_measure='long', theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[59]: agglo_sm_clf_labelled.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries on a fully labelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[60]: print("Number of hyperboxes = ", agglo_sm_clf_labelled.get_n_hyperboxes())

Number of hyperboxes = 45

Prediction

[61]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled_agglosm = agglo_sm_clf_labelled.predict(Xtest)
acc_agglosm_labelled = accuracy_score(ytest, y_pred_labelled_agglosm)
print(f'Accuracy (trained on a fully labelled dataset) = {acc_agglosm_labelled * 100: .
→˓2f}%')

Accuracy (trained on a fully labelled dataset) = 86.20%

334 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[62]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
agglo_sm_clf_labelled.predict_with_membership(Xtest[0:10])

[62]: array([[0.98924, 0.98094],
[0.94134, 0.96336],
[0.93044, 1.],
[0.98576, 0.93404],
[0.96956, 1.],
[0.99933, 0.9888],
[0.98227, 0.98306],
[0.81937, 1.],
[0.9779 , 1.],
[0.94744, 1.]])

[63]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
agglo_sm_clf_labelled.predict_proba(Xtest[0:10])

[63]: array([[0.50210641, 0.49789359],
[0.49421956, 0.50578044],
[0.48198338, 0.51801662],
[0.51347015, 0.48652985],
[0.49227239, 0.50772761],
[0.50264822, 0.49735178],
[0.49979902, 0.50020098],
[0.45035919, 0.54964081],
[0.49441327, 0.50558673],
[0.48650536, 0.51349464]])

4.2 Training a GFMM model using the agglomerative learning algorithm with a full similarity matrix
on a mixed labelled and unlabelled training set

[64]: agglo_sm_clf_labelled_unlabelled = AgglomerativeLearningGFMM(theta=theta, gamma=gamma,␣
→˓min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)
agglo_sm_clf_labelled_unlabelled.fit(Xtr_labelled_unlabelled, ytr_labelled_unlabelled)

[64]: AgglomerativeLearningGFMM(min_simil=0, simil_measure='long', theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[65]: agglo_sm_clf_labelled_unlabelled.draw_hyperbox_and_boundary("The trained GFMM classifier␣
→˓and its decision boundaries on a mixed labelled and unlabelled dataset")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[67]: print("Number of hyperboxes = ", agglo_sm_clf_labelled_unlabelled.get_n_hyperboxes())

Number of hyperboxes = 45

2.8. Tutorials 335

hyperbox-brain, Release 0.1.1

We can see that the agglomerative learning algorithm can also learn from a mixed labelled and unlabelled training set.
Similarly to above learning algorithms, unlabelled samples surrounded by many samples belonging to only one class
were assigned to the same class as their neighbours. The difference between the model trained by the AGGLO-SM
algorithm on a fully labelled data set and a mixed labelled and unlabelled data set occurs in the regions that unlabelled
samples are surrounded by overlapping labelled samples.

Prediction

[68]: # Using prediction returning only a predicted class for each input sample
y_pred_labelled_unlabelled_agglosm = agglo_sm_clf_labelled_unlabelled.predict(Xtest)
acc_agglosm_labelled_unlabelled = accuracy_score(ytest, y_pred_labelled_unlabelled_
→˓agglosm)
print(f'Accuracy (trained on a mixed labelled and unlabelled dataset) = {acc_agglosm_
→˓labelled_unlabelled * 100: .2f}%')

Accuracy (trained on a mixed labelled and unlabelled dataset) = 86.40%

[69]: # Using prediction returning membership values for classes with respect to each input␣
→˓sample
agglo_sm_clf_labelled_unlabelled.predict_with_membership(Xtest[0:10])

[69]: array([[0.98924, 0.98094],
[0.94134, 0.96336],
[0.93044, 1.],
[0.98576, 0.93404],
[0.96956, 1.],
[0.99933, 0.9888],
[0.98227, 0.98306],
[0.81937, 1.],
[0.9779 , 1.],
[0.94744, 1.]])

[70]: # Using prediction returning probability values for classes with respect to each input␣
→˓sample
agglo_sm_clf_labelled_unlabelled.predict_proba(Xtest[0:10])

[70]: array([[0.50210641, 0.49789359],
[0.49421956, 0.50578044],
[0.48198338, 0.51801662],
[0.51347015, 0.48652985],
[0.49227239, 0.50772761],
[0.50264822, 0.49735178],
[0.49979902, 0.50020098],
[0.45035919, 0.54964081],
[0.49441327, 0.50558673],
[0.48650536, 0.51349464]])

336 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Continuous learning from a trained hyperbox-based model

This example shows how to perform a continuous learning ability for a trained hyperbox-based model.

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np

Load training and testing datasets

In this example, we create two training datasets. One data set is used to trained a model and store it to the data storage.
The other data set is used to continously train the stored model after reloading that trained model.

[3]: from sklearn.model_selection import StratifiedKFold

[4]: # Get the path to the this jupyter notebook file
this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[4]: 'C:\\hyperbox-brain\\examples\\other_learning_ability_gfmm'

[5]: # Get the home folder of the hyperbox-brain toolbox
from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[5]: WindowsPath('C:/hyperbox-brain')

[6]: # Create the path to the training and testing files
training_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
testing_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))

[7]: # Create training and testing data sets
df_train = pd.read_csv(training_file, header=None)
df_test = pd.read_csv(testing_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

[8]: # Split the existing training set into two training sets
skf = StratifiedKFold(n_splits=2)

(continues on next page)

2.8. Tutorials 337

hyperbox-brain, Release 0.1.1

(continued from previous page)

for train1_index, train2_index in skf.split(Xtr, ytr):
X_tr1, X_tr2 = Xtr[train1_index], Xtr[train2_index]
y_tr1, y_tr2 = ytr[train1_index], ytr[train2_index]

This example shows how to continue to train a deployed model. This example will use an incremental learning algorithm
and an agglomerative learning algorithm without retraining from scratch for demonstration.

1. Training a General fuzzy min-max neural network model using an incremental learning algorithm

[9]: from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

[10]: # Initializing parameters
theta = 0.1
theta_min = 0.1
gamma = 1
is_draw = False

[11]: onln_gfmm_clf = OnlineGFMM(theta=theta, theta_min=theta_min, gamma=gamma, is_draw=is_
→˓draw)
onln_gfmm_clf.fit(X_tr1, y_tr1)

[11]: OnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1,
1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2]),

V=array([[0.42413 , 0.53516],
[0.70577 , 0.39146],
[0.82785 , 0.78025],
[0.6416 , 0.4824875],
[0.48794 , 0.672],
[0.26651 , 0.18424],
[0.32527 , 0.60393],
[0.19944 , 0.03],
[0.29343 , 0.28975],
[0.63683 , 0.6936],
[0.32782 , 0.55997],
[0.03 , 0.47757],
[0.54181 , 0.43986],
[0.73368 , 0.2170...
[0.49255 , 0.43164],
[0.81877 , 0.51294],
[0.4713 , 0.77996],
[0.25281 , 0.41059],
[0.25858 , 0.30637],
[0.3378 , 0.451095],
[0.68354 , 0.41653],
[0.34544 , 0.85954],
[0.59061 , 0.62471],
[0.68628 , 0.65662],
[0.14324 , 0.47785],
[0.41517 , 0.51424],
[0.83355 , 0.5761],
[0.15331 , 0.13567],

(continues on next page)

338 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.25929 , 0.81558],
[0.815 , 0.35526],
[0.67625 , 0.80457],
[0.37033 , 0.26124],
[0.67914 , 0.48785]]),

theta=0.1, theta_min=0.1)

Display decision boundaries among classes if input data are 2-dimensional

[12]: onln_gfmm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its decision␣
→˓boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[13]: print("Number of hyperboxes = ", onln_gfmm_clf.get_n_hyperboxes())

Number of hyperboxes = 39

Make prediction

[14]: from sklearn.metrics import accuracy_score

[15]: y_pred = onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 86.40%

Store the trained model

[16]: from hbbrain.utils.model_storage import store_model

[17]: store_model(onln_gfmm_clf, "store_cont_model.dummy")

Reload the trained model and make prediction

[18]: from hbbrain.utils.model_storage import load_model

[19]: trained_onln_gfmm_clf = load_model("store_cont_model.dummy")

[20]: y_pred_trained_model = trained_onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred_trained_model)
print(f'Accuracy = {acc * 100: .2f}%')

2.8. Tutorials 339

hyperbox-brain, Release 0.1.1

Accuracy = 86.40%

Continue to train the deployed model using another training set

[21]: trained_onln_gfmm_clf.fit(X_tr2, y_tr2)

[21]: OnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1,
1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1,
2, 2, 1, 2, 2, 2, 2, 2, 1]),

V=array([[0.42413 , 0.53516],
[0.70577 , 0.397105],
[0.82785 , 0.78025],
[0.66038 , 0.51128],
[0.48794 , 0.672],
[0.26651 , 0.18424],
[0.32289 , 0.60194],
[0.19944 , 0.03],
[0.29343 , 0.28975],
[0.63683 , 0.6936],
[0.32906 , 0.55512],
[0.03 , 0.47757],
[0.54...
[0.25929 , 0.81558],
[0.815 , 0.397095],
[0.67906 , 0.83605],
[0.37033 , 0.26124],
[0.66037 , 0.57837],
[0.52197 , 0.91371],
[0.52621 , 0.66846],
[0.80583 , 0.43242],
[0.79935 , 0.7757],
[0.35813 , 0.58772],
[0.79516 , 0.32629],
[0.70743 , 0.50325],
[0.36057 , 0.71561],
[0.72496 , 0.38674],
[0.28822 , 0.62174],
[0.14737 , 0.28498],
[0.56487 , 0.17003],
[0.68469 , 0.2221],
[0.55763 , 0.43813]]),

theta=0.1, theta_min=0.1)

340 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Display decision boundaries among classes if input data are 2-dimensional

[22]: trained_onln_gfmm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[23]: print("Number of hyperboxes = ", trained_onln_gfmm_clf.get_n_hyperboxes())

Number of hyperboxes = 53

Make prediction

[24]: y_pred = trained_onln_gfmm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 84.50%

2. Training a General fuzzy min-max neural network model using an agglomerative learning algo-
rithm

[26]: from hbbrain.numerical_data.batch_learner.agglo_gfmm import AgglomerativeLearningGFMM

[27]: # Initialise parameters
theta = 0.2
gamma = 1
min_simil = 0
simil_measure = 'long'
is_draw = False

[28]: agglo_sm_clf = AgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_simil=min_simil,␣
→˓simil_measure=simil_measure, is_draw=is_draw)
agglo_sm_clf.fit(X_tr1, y_tr1)

[28]: AgglomerativeLearningGFMM(min_simil=0, simil_measure='long', theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[29]: agglo_sm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its decision␣
→˓boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[30]: print("Number of hyperboxes = ", agglo_sm_clf.get_n_hyperboxes())

2.8. Tutorials 341

hyperbox-brain, Release 0.1.1

Number of hyperboxes = 30

Make prediction

[31]: y_pred_agglosm = agglo_sm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred_agglosm)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 84.90%

Store the trained model

[32]: store_model(agglo_sm_clf, "store_agglosm_model.dummy")

Reload the trained model and make prediction

[33]: trained_agglo_sm_clf = load_model("store_agglosm_model.dummy")

[34]: y_pred_trained_agglosm_model = trained_agglo_sm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred_trained_agglosm_model)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 84.90%

Continue to train the deployed model using another training set

[35]: trained_agglo_sm_clf.fit(X_tr2, y_tr2)

[35]: AgglomerativeLearningGFMM(min_simil=0, simil_measure='long', theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[36]: trained_agglo_sm_clf.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[37]: print("Number of hyperboxes = ", trained_agglo_sm_clf.get_n_hyperboxes())

Number of hyperboxes = 51

342 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Make prediction

[38]: y_pred_agglosm = trained_agglo_sm_clf.predict(Xtest)
acc = accuracy_score(ytest, y_pred_agglosm)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 87.90%

Learning from data sets with missing values of features

This tutorial illustrates the ability of learning from missing feature values of general fuzzy min-max neural networks
using various training algorithms. This tutorial also shows how to use membership values to make prediction for testing
data with missing feature values.

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score

Load training and testing datasets

In this tutorial, we will load a training set without missing feature values, a training set with missing feature values, and
a testing set without missing feature values. Next, we will compare the classification performance on the same testing
set of the model trained on data with missing feature values and the one trained on data without missing feature values.

[3]: # Get the path to the this jupyter notebook file
this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\examples\\other_learning_ability_gfmm'

[4]: # Get the home folder of the hyperbox-brain toolbox
from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

[5]: # Create the path to the training and testing files
training_file_without_missing = os.path.join(project_dir, Path("dataset/syn_num_train.csv
→˓"))
training_file_with_missing = os.path.join(project_dir, Path("dataset/syn_num_train_
→˓missing_values.csv"))
testing_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))

2.8. Tutorials 343

hyperbox-brain, Release 0.1.1

[6]: # Create training and testing data sets
df_train_without_missing = pd.read_csv(training_file_without_missing, header=None)
df_train_with_missing = pd.read_csv(training_file_with_missing, header=None)
df_test = pd.read_csv(testing_file, header=None)

Xy_train_without_missing = df_train_without_missing.to_numpy()
Xy_train_with_missing = df_train_with_missing.to_numpy()
Xy_test = df_test.to_numpy()

Xtr_without_missing = Xy_train_without_missing[:, :-1]
ytr_without_missing = Xy_train_without_missing[:, -1]

Xtr_with_missing = Xy_train_with_missing[:, :-1]
ytr_with_missing = Xy_train_with_missing[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

[7]: # Count number of samples with missing feature values
n_samples = Xtr_with_missing.shape[0]
n_samples_non_missing = sum(np.isnan(Xtr_with_missing).sum(axis=1) == 0)
print("Total number of training samples = ", n_samples)
print("Number of samples with missing feature values = ", n_samples-n_samples_non_
→˓missing)

Total number of training samples = 250
Number of samples with missing feature values = 26

This tutorial will demostrate the capability of learning from missing feature values of four learning algorithms of the
GFMMNN including original online learning algorithm, improved online learning algorithm, agglomerative learning
algorithm, and accelerated agglomerative learning algorithm.

1. Original online learning algorithm (Onln-GFMM) for General Fuzzy Min-Max Neural Network

[8]: from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

[9]: # Initialise parameters
theta=0.1
theta_min=0.1
gamma=1
is_draw=False

344 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Training a GFMMNN model on the data set without missing feature values

[10]: onln_gfmm_clf_without_missing = OnlineGFMM(theta=theta, theta_min=theta_min, gamma=gamma,
→˓ is_draw=is_draw)

[11]: onln_gfmm_clf_without_missing.fit(Xtr_without_missing, ytr_without_missing)

[11]: OnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1,
1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1,
2, 2, 1, 2, 2, 2, 2, 2, 1]),

V=array([[0.42413 , 0.53516],
[0.70577 , 0.397105],
[0.82785 , 0.78025],
[0.66038 , 0.51128],
[0.48794 , 0.672],
[0.26651 , 0.18424],
[0.32289 , 0.60194],
[0.19944 , 0.03],
[0.29343 , 0.28975],
[0.63683 , 0.6936],
[0.32906 , 0.55512],
[0.03 , 0.47757],
[0.54...
[0.25929 , 0.81558],
[0.815 , 0.397095],
[0.67906 , 0.83605],
[0.37033 , 0.26124],
[0.52197 , 0.91371],
[0.66037 , 0.57837],
[0.52621 , 0.66846],
[0.80583 , 0.43242],
[0.79935 , 0.7757],
[0.35813 , 0.58772],
[0.79516 , 0.32629],
[0.70743 , 0.50325],
[0.36057 , 0.71561],
[0.72496 , 0.38674],
[0.28822 , 0.62174],
[0.14737 , 0.28498],
[0.56487 , 0.17003],
[0.68469 , 0.2221],
[0.55763 , 0.43813]]),

theta=0.1, theta_min=0.1)

[12]: print("Number of hyperboxes of the GFMM model trained on the data set without missing␣
→˓feature values = ", onln_gfmm_clf_without_missing.get_n_hyperboxes())

Number of hyperboxes of the GFMM model trained on the data set without missing feature␣
→˓values = 53

[13]: onln_gfmm_clf_without_missing.draw_hyperbox_and_boundary("The trained GFMM classifier␣
→˓and its decision boundaries")

2.8. Tutorials 345

hyperbox-brain, Release 0.1.1

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Training a GFMMNN model on the data set WITH missing feature values

[14]: onln_gfmm_clf_with_missing = OnlineGFMM(theta=theta, theta_min=theta_min, gamma=gamma,␣
→˓is_draw=is_draw)

[15]: onln_gfmm_clf_with_missing.fit(Xtr_with_missing, ytr_with_missing)

[15]: OnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2,
2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2,
2, 1, 2, 2, 1, 2, 2, 2, 1]),

V=array([[0.42413 , 0.47106],
[0.70577 , 0.397105],
[0.82785 , 0.78025],
[0.48794 , 0.672],
[0.66038 , 0.51128],
[0.29343 , 0.26124],
[0.4434 , 0.53516],
[0.32289 , 0.603435],
[0.63683 , 0.6936],
[0.03 , 0.47757],
[0.54181 , 0.43986],
[0.71785 , 0.21704],
[0...
[0.30005 , 0.19643],
[0.67906 , 0.83605],
[0.16155 , 0.28498],
[0.52197 , 0.87969],
[0.66037 , 0.57837],
[0.49408 , 0.66846],
[0.80583 , 0.43242],
[0.35813 , 0.58772],
[0.79935 , 0.7757],
[0.79516 , 0.32629],
[0.70743 , 0.50325],
[0.36842 , 0.77238],
[0.72496 , 0.34978],
[0.28822 , 0.62174],
[0.91185 , 0.48697],
[0.29163 , 0.086547],
[0.56487 , 0.17003],
[0.68469 , 0.2221],
[0.55763 , 0.43813]]),

theta=0.1, theta_min=0.1)

[16]: print("Number of hyperboxes of the GFMM model trained on the data set with missing␣
→˓feature values = ", onln_gfmm_clf_with_missing.get_n_hyperboxes())

346 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Number of hyperboxes of the GFMM model trained on the data set with missing feature␣
→˓values = 53

[17]: onln_gfmm_clf_with_missing.draw_hyperbox_and_boundary("The trained GFMM classifier and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Make prediction

[18]: y_pred_without_missing = onln_gfmm_clf_without_missing.predict(Xtest)
acc_without_missing = accuracy_score(ytest, y_pred_without_missing)
print(f'Accuracy of the model trained on the data set without missing values = {acc_
→˓without_missing * 100: .2f}%')

y_pred_with_missing = onln_gfmm_clf_with_missing.predict(Xtest)
acc_with_missing = accuracy_score(ytest, y_pred_with_missing)
print(f'Accuracy of the model trained on the data set with missing values = {acc_with_
→˓missing * 100: .2f}%')

Accuracy of the model trained on the data set without missing values = 84.50%
Accuracy of the model trained on the data set with missing values = 84.10%

[19]: Xtest_with_missing = np.array([[0.1, np.nan],
[np.nan, 0.5]])

onln_gfmm_clf_with_missing.predict_with_membership(Xtest_with_missing)

[19]: array([[0.79877, 0.96097],
[1. , 1.]])

From the illustration of resulting hyperboxes, we can see that for input sample X=[0.1,_], there is no blue (class 1)
hyperboxes surrounding the vertical line x = 0.1 and the distance from the green (class 2) hyperboxes to this vertical
line (x = 0.1) is shorter than the distance from the blue (class 1) hyperboxes to this line. Therefore, the membership
value of class 2 (0.96097) is higher than the membership value of class 1 (0.79877) in this case. For input sample X
= [_, 0.5], we can see that there are both green hyperboxes and blue hyperboxes crossing out the horizontal line (y =
0.5). Therefore, the membership values for both classes in this case are 1.

2. Improved online learning algorithm (IOL-GFMM) for General Fuzzy Min-Max Neural Network

[20]: from hbbrain.numerical_data.incremental_learner.iol_gfmm import ImprovedOnlineGFMM

[21]: # Initialise parameters
theta=0.1
gamma=1
is_draw=False

2.8. Tutorials 347

hyperbox-brain, Release 0.1.1

Training a GFMMNN model on the data set without missing feature values

[22]: iol_gfmm_clf_without_missing = ImprovedOnlineGFMM(theta=theta, gamma=gamma, is_draw=is_
→˓draw)

[23]: iol_gfmm_clf_without_missing.fit(Xtr_without_missing, ytr_without_missing)

[23]: ImprovedOnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1,␣
→˓2, 1,

2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2,
1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2]),

N_samples=array([11, 3, 2, 10, 5, 6, 6, 2, 7, 6, 3, 1, 7, ␣
→˓6, 2, 11, 1,

5, 7, 2, 3, 9, 3, 4, 6, 9, 10, 5, 8, 13, 4, 4, 3, 3,
6, 4, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1,
5, 2, 1, 1, 6, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1]),

V=array([[0.42413, 0.5351...
[0.52621 , 0.59493],
[0.79935 , 0.7757],
[0.6248 , 0.39922],
[0.79516 , 0.32629],
[0.66562 , 0.36352],
[0.36057 , 0.71561],
[0.72496 , 0.38674],
[0.70743 , 0.50325],
[0.40233 , 0.67232],
[0.28822 , 0.62174],
[0.14737 , 0.28498],
[0.75421 , 0.40498],
[0.59655 , 0.56029],
[0.91185 , 0.48697],
[0.6504 , 0.51624],
[0.68853 , 0.41466],
[0.56487 , 0.17003],
[0.59235 , 0.54123],
[0.68469 , 0.2221]]),

theta=0.1)

[24]: print("Number of hyperboxes of the GFMM model trained on the data set without missing␣
→˓feature values = ", iol_gfmm_clf_without_missing.get_n_hyperboxes())

Number of hyperboxes of the GFMM model trained on the data set without missing feature␣
→˓values = 68

[25]: iol_gfmm_clf_without_missing.draw_hyperbox_and_boundary("The trained GFMM classifier and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

348 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

<IPython.core.display.HTML object>

Training a GFMMNN model on the data set WITH missing feature values

[26]: iol_gfmm_clf_with_missing = ImprovedOnlineGFMM(theta=theta, gamma=gamma, is_draw=is_draw)

[27]: iol_gfmm_clf_with_missing.fit(Xtr_with_missing, ytr_with_missing)

[27]: ImprovedOnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2,␣
→˓1, 1,

2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2,
2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2]),

N_samples=array([4, 3, 2, 6, 8, 10, 8, 7, 6, 1, 9, 6, 2, ␣
→˓3, 5, 7, 2,

3, 7, 3, 4, 9, 9, 10, 7, 7, 11, 4, 3, 5, 4, 6, 1, 12,
1, 3, 2, 4, 1, 3, 4, 2, 1, 1, 1, 1, 2, 3, 2, 1, 3,
5, 1, 3, 3, 1, 2, 1, 1, 1, 1, 1, 1]),

V=array([[0.39868 , 0.47106],
[0.77074 , 0.48234],...
[0.65327 , 0.51585],
[0.57962 , 0.57837],
[0.79935 , 0.7757],
[0.6248 , 0.39922],
[0.79516 , 0.32629],
[0.66562 , 0.36352],
[0.36842 , 0.77238],
[0.72496 , 0.34978],
[0.70743 , 0.50325],
[0.28822 , 0.62174],
[0.38312 , 0.67232],
[0.75421 , 0.40498],
[0.59655 , 0.56029],
[0.91185 , 0.48697],
[0.6504 , 0.51624],
[0.29163 , 0.086547],
[0.68853 , 0.41466],
[0.56487 , 0.17003],
[0.68469 , 0.2221]]),

theta=0.1)

[28]: print("Number of hyperboxes of the GFMM model trained on the data set with missing␣
→˓feature values = ", iol_gfmm_clf_with_missing.get_n_hyperboxes())

Number of hyperboxes of the GFMM model trained on the data set with missing feature␣
→˓values = 63

[29]: iol_gfmm_clf_with_missing.draw_hyperbox_and_boundary("The trained GFMM classifier and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

2.8. Tutorials 349

hyperbox-brain, Release 0.1.1

<IPython.core.display.HTML object>

Make prediction

[30]: y_pred_without_missing_iol = iol_gfmm_clf_without_missing.predict(Xtest)
acc_without_missing = accuracy_score(ytest, y_pred_without_missing_iol)
print(f'Accuracy of the model trained on the data set without missing values = {acc_
→˓without_missing * 100: .2f}%')

y_pred_with_missing_iol = iol_gfmm_clf_with_missing.predict(Xtest)
acc_with_missing = accuracy_score(ytest, y_pred_with_missing_iol)
print(f'Accuracy of the model trained on the data set with missing values = {acc_with_
→˓missing * 100: .2f}%')

Accuracy of the model trained on the data set without missing values = 87.20%
Accuracy of the model trained on the data set with missing values = 86.70%

Using membership value to show the prediction for the testing data with missing features values

[31]: Xtest_with_missing = np.array([[0.1, np.nan],
[np.nan, 0.5]])

iol_gfmm_clf_with_missing.predict_with_membership(Xtest_with_missing)

[31]: array([[0.79877, 0.96097],
[1. , 1.]])

The results and explanation are similar to the case for the original online learning algorithm

3. Accelerated agglomerative learning algorithm (AGGLO-2) for General Fuzzy Min-Max Neural Net-
work

[32]: from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM

[33]: # Initialise parameters for the accelerated agglomerative learning algorithm
theta = 0.1
gamma = 1
min_simil = 0
simil_measure = 'mid'
is_draw = False

350 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Training a GFMMNN model on the data set without missing feature values

[34]: agglo2_gfmm_clf_without_missing = AccelAgglomerativeLearningGFMM(theta=theta,␣
→˓gamma=gamma, min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[35]: agglo2_gfmm_clf_without_missing.fit(Xtr_without_missing, ytr_without_missing)

[35]: AccelAgglomerativeLearningGFMM(min_simil=0, theta=0.1)

[36]: print("Number of hyperboxes of the GFMM model trained on the data set without missing␣
→˓feature values = ", agglo2_gfmm_clf_without_missing.get_n_hyperboxes())

Number of hyperboxes of the GFMM model trained on the data set without missing feature␣
→˓values = 62

[37]: agglo2_gfmm_clf_without_missing.draw_hyperbox_and_boundary("The trained GFMM classifier␣
→˓and its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Training a GFMMNN model on the data set WITH missing feature values

[38]: agglo2_gfmm_clf_with_missing = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma,␣
→˓min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[39]: agglo2_gfmm_clf_with_missing.fit(Xtr_with_missing, ytr_with_missing)

[39]: AccelAgglomerativeLearningGFMM(min_simil=0, theta=0.1)

[40]: print("Number of hyperboxes of the GFMM model trained on the data set with missing␣
→˓feature values = ", agglo2_gfmm_clf_with_missing.get_n_hyperboxes())

Number of hyperboxes of the GFMM model trained on the data set with missing feature␣
→˓values = 61

[41]: agglo2_gfmm_clf_with_missing.draw_hyperbox_and_boundary("The trained GFMM classifier and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2.8. Tutorials 351

hyperbox-brain, Release 0.1.1

Make prediction

[42]: y_pred_without_missing_agglo2 = agglo2_gfmm_clf_without_missing.predict(Xtest)
acc_without_missing = accuracy_score(ytest, y_pred_without_missing_agglo2)
print(f'Accuracy of the model trained on the data set without missing values = {acc_
→˓without_missing * 100: .2f}%')

y_pred_with_missing_agglo2 = agglo2_gfmm_clf_with_missing.predict(Xtest)
acc_with_missing = accuracy_score(ytest, y_pred_with_missing_agglo2)
print(f'Accuracy of the model trained on the data set with missing values = {acc_with_
→˓missing * 100: .2f}%')

Accuracy of the model trained on the data set without missing values = 85.00%
Accuracy of the model trained on the data set with missing values = 85.20%

Using membership value to show the prediction for the testing data with missing features values

[43]: Xtest_with_missing = np.array([[0.1, np.nan],
[np.nan, 0.5]])

agglo2_gfmm_clf_with_missing.predict_with_membership(Xtest_with_missing)

[43]: array([[0.79877, 0.96097],
[1. , 1.]])

4. Agglomerative learning algorithm with full similarity matrix (AGGLO-SM) for General Fuzzy Min-
Max Neural Network

[44]: from hbbrain.numerical_data.batch_learner.agglo_gfmm import AgglomerativeLearningGFMM

[45]: # Initialise parameters for the accelerated agglomerative learning algorithm
theta = 0.1
gamma = 1
min_simil = 0
simil_measure = 'mid'
is_draw = False

Training a GFMMNN model on the data set without missing feature values

[46]: agglosm_gfmm_clf_without_missing = AgglomerativeLearningGFMM(theta=theta, gamma=gamma,␣
→˓min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[47]: agglosm_gfmm_clf_without_missing.fit(Xtr_without_missing, ytr_without_missing)

[47]: AgglomerativeLearningGFMM(min_simil=0, theta=0.1)

[48]: print("Number of hyperboxes of the GFMM model trained on the data set without missing␣
→˓feature values = ", agglosm_gfmm_clf_without_missing.get_n_hyperboxes())

352 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Number of hyperboxes of the GFMM model trained on the data set without missing feature␣
→˓values = 62

[49]: agglosm_gfmm_clf_without_missing.draw_hyperbox_and_boundary("The trained GFMM classifier␣
→˓and its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Training a GFMMNN model on the data set WITH missing feature values

[50]: agglosm_gfmm_clf_with_missing = AgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_
→˓simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[51]: agglosm_gfmm_clf_with_missing.fit(Xtr_with_missing, ytr_with_missing)

[51]: AgglomerativeLearningGFMM(min_simil=0, theta=0.1)

[52]: print("Number of hyperboxes of the GFMM model trained on the data set WITH missing␣
→˓feature values = ", agglosm_gfmm_clf_with_missing.get_n_hyperboxes())

Number of hyperboxes of the GFMM model trained on the data set WITH missing feature␣
→˓values = 60

[53]: agglosm_gfmm_clf_with_missing.draw_hyperbox_and_boundary("The trained GFMM classifier␣
→˓and its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Make prediction

[54]: y_pred_without_missing_agglosm = agglosm_gfmm_clf_without_missing.predict(Xtest)
acc_without_missing = accuracy_score(ytest, y_pred_without_missing_agglosm)
print(f'Accuracy of the model trained on the data set without missing values = {acc_
→˓without_missing * 100: .2f}%')

y_pred_with_missing_agglosm = agglosm_gfmm_clf_with_missing.predict(Xtest)
acc_with_missing = accuracy_score(ytest, y_pred_with_missing_agglosm)
print(f'Accuracy of the model trained on the data set with missing values = {acc_with_
→˓missing * 100: .2f}%')

Accuracy of the model trained on the data set without missing values = 85.20%
Accuracy of the model trained on the data set with missing values = 84.40%

2.8. Tutorials 353

hyperbox-brain, Release 0.1.1

Using membership value to show the prediction for the testing data with missing features values

[55]: Xtest_with_missing = np.array([[0.1, np.nan],
[np.nan, 0.5]])

agglosm_gfmm_clf_with_missing.predict_with_membership(Xtest_with_missing)

[55]: array([[0.79877, 0.96097],
[1. , 1.]])

Using probability and membership values of classes for prediction

This example shows how to use probability and membership values of class labels for prediction when applying single
hyperbox-based models, ensemble models of hyperbox-based classifiers, and multigranular hyperbox-based models.
We employ the original online learning algorithm for general fuzzy min-max neural network, accelerated agglomerative
learning algorithm for general fuzzy min-max neural network, Simpson’s online learning agorithm for fuzzy min-max
neural network, bagging of hyperbox-based models, and multigranular hyperbox-based models for demostration in this
tutorial.

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np

Load training and testing datasets

[3]: # Get the path to the this jupyter notebook file
this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\examples\\other_learning_ability_gfmm'

[4]: # Get the home folder of the hyperbox-brain toolbox
from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

[5]: # Create the path to the training and testing files
training_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
testing_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))

[6]: # Create training and testing data sets
df_train = pd.read_csv(training_file, header=None)
df_test = pd.read_csv(testing_file, header=None)

Xy_train = df_train.to_numpy()
(continues on next page)

354 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

(continued from previous page)

Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

1. Original online learning algorithm for General fuzzy min-max neural network (Onln-GFMM)

[7]: from hbbrain.numerical_data.incremental_learner.onln_gfmm import OnlineGFMM

[8]: # Initializing parameters
theta = 0.1
theta_min = 0.1
gamma = 4
is_draw = False

Train a model

[9]: onln_gfmm_clf = OnlineGFMM(theta=theta, theta_min=theta_min, gamma=gamma, is_draw=is_
→˓draw)
onln_gfmm_clf.fit(Xtr, ytr)

[9]: OnlineGFMM(C=array([1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1,
1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1,
2, 2, 1, 2, 2, 2, 2, 2, 1]),

V=array([[0.42413 , 0.53516],
[0.70577 , 0.397105],
[0.82785 , 0.78025],
[0.66038 , 0.51128],
[0.48794 , 0.672],
[0.26651 , 0.18424],
[0.32289 , 0.60194],
[0.19944 , 0.03],
[0.29343 , 0.28975],
[0.63683 , 0.6936],
[0.32906 , 0.55512],
[0.03 , 0.47757],
[0.54...
[0.815 , 0.397095],
[0.67906 , 0.83605],
[0.37033 , 0.26124],
[0.52197 , 0.91371],
[0.66037 , 0.57837],
[0.52621 , 0.66846],
[0.80583 , 0.43242],
[0.79935 , 0.7757],
[0.35813 , 0.58772],

(continues on next page)

2.8. Tutorials 355

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.79516 , 0.32629],
[0.70743 , 0.50325],
[0.36057 , 0.71561],
[0.72496 , 0.38674],
[0.28822 , 0.62174],
[0.14737 , 0.28498],
[0.56487 , 0.17003],
[0.68469 , 0.2221],
[0.55763 , 0.43813]]),

gamma=4, theta=0.1, theta_min=0.1)

Make prediction

Use probability values and membership values to make prediction for the first ten testing samples. The orders of
columns are also the orders of class labels in an ascending order. In this example, the first column contains the predicted
values for class 1, and the second column contains the predicted values for class 2.

The predicted class probability is the fraction of the membership value of the representative hyperbox of that class and
the sum of all membership values of all representative hyperboxes of all classes. The predicted class membership value
is the membership value of the representative hyperbox of that class.

[10]: print("Input classes: ", np.unique(ytr))

Input classes: [1. 2.]

[11]: onln_gfmm_clf.predict_proba(Xtest[:10])

[11]: array([[0.50044451, 0.49955549],
[0.48259685, 0.51740315],
[0.42006751, 0.57993249],
[0.52674382, 0.47325618],
[0.46011316, 0.53988684],
[0.50352398, 0.49647602],
[0.49915114, 0.50084886],
[0.3190052 , 0.6809948],
[0.50079564, 0.49920436],
[0.44152243, 0.55847757]])

[12]: onln_gfmm_clf.predict_with_membership(Xtest[:10])

[12]: array([[0.95696 , 0.95526],
[0.76536 , 0.82056],
[0.72176 , 0.99644],
[0.94304 , 0.84728],
[0.85224 , 1.],
[0.96876 , 0.9552],
[0.92908 , 0.93224],
[0.46844 , 1.],
[1. , 0.9968225],
[0.78976 , 0.99896]])

356 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

2. Accelerated agglomerative learning algorithm for General fuzzy min-max neural network (AGGLO-
2)

[13]: from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM

[14]: # Initializing parameters
theta=0.1
gamma=4
min_simil=0
simil_measure='long'
is_draw=False

Train a model

[15]: agglo2_gfmm_clf = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_simil=min_
→˓simil, simil_measure=simil_measure, is_draw=is_draw)
agglo2_gfmm_clf.fit(Xtr, ytr)

[15]: AccelAgglomerativeLearningGFMM(gamma=4, min_simil=0, simil_measure='long',
theta=0.1)

Make prediction

[16]: agglo2_gfmm_clf.predict_proba(Xtest[:10])

[16]: array([[0.50882641, 0.49117359],
[0.47279466, 0.52720534],
[0.42148046, 0.57851954],
[0.56160076, 0.43839924],
[0.46758668, 0.53241332],
[0.50352398, 0.49647602],
[0.49915114, 0.50084886],
[0.20099716, 0.79900284],
[0.49770692, 0.50229308],
[0.44615176, 0.55384824]])

[17]: agglo2_gfmm_clf.predict_with_membership(Xtest[:10])

[17]: array([[0.95696, 0.92376],
[0.76536, 0.85344],
[0.72176, 0.99068],
[0.94304, 0.73616],
[0.87824, 1.],
[0.96876, 0.9552],
[0.92908, 0.93224],
[0.25156, 1.],
[0.9116 , 0.92],
[0.78976, 0.9804]])

2.8. Tutorials 357

hyperbox-brain, Release 0.1.1

3. Original online learning algorithm for Simpson’s Fuzzy min-max neural network (FMNN)

[18]: from hbbrain.numerical_data.incremental_learner.fmnn import FMNNClassifier

[19]: # Initializing parameters
theta = 0.1
gamma = 4
is_draw = False

Train a model

[20]: fmnn_clf = FMNNClassifier(theta=theta, gamma=gamma, is_draw=is_draw)
fmnn_clf.fit(Xtr, ytr)

[20]: FMNNClassifier(C=array([1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2,
2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1,
2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2,
2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2,
1, 1, 1]),

V=array([[0.36239 , 0.55942],
[0.64082 , 0.43016875],
[0.91059 , 0.82085],
[0.65328 , 0.50326],
[0.46107 , 0.68306],
[0.29812 , 0.18424],
[0.33593 , 0.68775],
[0.1...
[0.25621 , 0.62174],
[0.42403 , 0.7592],
[0.79157 , 0.59996],
[0.72496 , 0.34978],
[0.36842 , 0.76576],
[0.73681 , 0.71261],
[0.66773 , 0.31155],
[0.32289 , 0.6747],
[0.28077 , 0.27116],
[0.61106 , 0.28476],
[0.75421 , 0.40498],
[0.38038 , 0.67232],
[0.36745 , 0.52006],
[0.91185 , 0.48697],
[0.35813 , 0.58584],
[0.25924 , 0.42696],
[0.70685 , 0.64383],
[0.75047 , 0.6092],
[0.72842 , 0.61048]]),

gamma=4, theta=0.1)

358 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Make prediction

[21]: fmnn_clf.predict_proba(Xtest[:10])

[21]: array([[0.5001282 , 0.4998718],
[0.49113606, 0.50886394],
[0.47048553, 0.52951447],
[0.51190571, 0.48809429],
[0.49033913, 0.50966087],
[0.5028714 , 0.4971286],
[0.49750079, 0.50249921],
[0.41923606, 0.58076394],
[0.49781361, 0.50218639],
[0.47269621, 0.52730379]])

[22]: fmnn_clf.predict_with_membership(Xtest[:10])

[22]: array([[0.9801625 , 0.97966],
[0.92338 , 0.95671],
[0.8885225 , 1.],
[0.96807 , 0.92304],
[0.96158875, 0.99948],
[1. , 0.98858],
[0.97989 , 0.989735],
[0.72187 , 1.],
[0.9912925 , 1.],
[0.89644 , 1.]])

4. Bagging of base general fuzzy min-max neural networks trained by the original online learning
algorithm

[23]: from hbbrain.numerical_data.ensemble_learner.decision_comb_bagging import␣
→˓DecisionCombinationBagging

[24]: # Initialise parameters
n_estimators = 20 # number of base learners
max_samples = 0.5 # sampling rate for samples
bootstrap = False # random subsampling without replacement
class_balanced = False # do not use the class-balanced sampling mode
n_jobs = 4 # number of processes is used to build base learners

Train a bagging model

[25]: # Init a hyperbox-based model used to train base learners
Using the GFMM classifier with the original online learning algorithm with the maximum␣
→˓hyperbox size 0.1
base_estimator = OnlineGFMM(theta=theta, gamma=gamma)

2.8. Tutorials 359

hyperbox-brain, Release 0.1.1

[26]: dc_bagging_subsampling = DecisionCombinationBagging(base_estimator=base_estimator, n_
→˓estimators=n_estimators, max_samples=max_samples, bootstrap=bootstrap, class_
→˓balanced=class_balanced, n_jobs=n_jobs, random_state=0)

[27]: dc_bagging_subsampling.fit(Xtr, ytr)

[27]: DecisionCombinationBagging(base_estimator=OnlineGFMM(C=array([], dtype=float64),
V=array([], dtype=float64),
W=array([], dtype=float64),
gamma=4, theta=0.1),

n_estimators=20, n_jobs=4, random_state=0)

Make prediction

This example shows how to use predict_proba and predict_with_membership functions to make prediction. The pre-
dicted class probabilities of an input sample with respect to an ensemble model are computed as the mean predicted
class probabilities of the hyperbox-based learners in the ensemble model. The class probability of a single hyperbox-
based learner is the fraction of the membership value of the representative hyperbox of that class and the sum of all
membership values of all representative hyperboxes of all classes.

The predicted class memberships of an input sample are computed as the mean predicted class memberships of the
hyperbox-based learners in the ensemble model. The class membership of a single hyperbox-based learner is the
membership from the input X to the representative hyperbox of that class to join the prediction procedure.

[28]: dc_bagging_subsampling.predict_proba(Xtest[:10])

[28]: array([[0.47815396, 0.52184604],
[0.5012498 , 0.4987502],
[0.3955224 , 0.6044776],
[0.54362581, 0.45637419],
[0.47159695, 0.52840305],
[0.52292342, 0.47707658],
[0.49756119, 0.50243881],
[0.1964586 , 0.8035414],
[0.47362699, 0.52637301],
[0.39199205, 0.60800795]])

[29]: dc_bagging_subsampling.predict_with_membership(Xtest[:10])

[29]: array([[0.843956 , 0.91573],
[0.818432 , 0.810635],
[0.639162 , 0.963144],
[0.87822 , 0.7370675],
[0.858645 , 0.958337],
[0.98751575, 0.90252725],
[0.916385 , 0.927697],
[0.232785 , 0.932006],
[0.86215975, 0.953138],
[0.6373855 , 0.977412]])

360 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

5. Multi-resolution Hierarchical Granular Representation based Classifier using GFMM

[30]: from hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm import␣
→˓MultiGranularGFMM

[31]: # Initializing parameters
number of disjoint partitions to build base learners
n_partitions = 4
a list of maximum hyperbox sizes for granularity levels
granular_theta = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
minimum membership values between two hyperboxes aggregated at higher abstraction␣
→˓levels
min_membership_aggregation = 0.1
the speed of decreasing of membership values
gamma = 4

Training a multigranular model

[32]: from hbbrain.constants import HETEROGENEOUS_CLASS_LEARNING
multi_granular_gfmm_clf = MultiGranularGFMM(n_partitions=n_partitions, granular_
→˓theta=granular_theta, gamma=gamma, min_membership_aggregation=min_membership_
→˓aggregation)
Training using the heterogeneous model for class labels.
multi_granular_gfmm_clf.fit(Xtr, ytr, learning_type=HETEROGENEOUS_CLASS_LEARNING)

[Parallel(n_jobs=4)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=4)]: Done 2 out of 4 | elapsed: 2.7s remaining: 2.7s
[Parallel(n_jobs=4)]: Done 4 out of 4 | elapsed: 2.7s finished

[32]: MultiGranularGFMM(gamma=4, granular_theta=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
min_membership_aggregation=0.1)

Make prediction

The predicted class probability at a given granularity level is the fraction of the membership value of the representa-
tive hyperbox of that class at the given granularity level and the sum of all membership values of all representative
hyperboxes of all classes joining the prediction procedure. If the given granularity level gets the values of -1, then the
predicted class probability value for each sample is the average of probability values at all available granularity levels.
Similar meaning is applied for the predicted class membership values.

[33]: # Predicted class probability values for the first ten samples based on the average␣
→˓values of all available granularity levels
multi_granular_gfmm_clf.predict_proba(Xtest[:10], level=-1)

[33]: array([[0.51102808, 0.48897192],
[0.54380893, 0.45619107],
[0.39490266, 0.60509734],
[0.54865927, 0.45134073],
[0.46152604, 0.53847396],
[0.52639798, 0.47360202],
[0.48346396, 0.51653604],

(continues on next page)

2.8. Tutorials 361

hyperbox-brain, Release 0.1.1

(continued from previous page)

[0.2453813 , 0.7546187],
[0.45120077, 0.54879923],
[0.44126587, 0.55873413]])

[34]: # Predicted class probability values for the first ten samples at the second granularity␣
→˓level
multi_granular_gfmm_clf.predict_proba(Xtest[:10], level=1)

[34]: array([[0.51670508, 0.48329492],
[0.54928154, 0.45071846],
[0.38979741, 0.61020259],
[0.54133645, 0.45866355],
[0.45073053, 0.54926947],
[0.51150372, 0.48849628],
[0.47904728, 0.52095272],
[0.20099716, 0.79900284],
[0.43810123, 0.56189877],
[0.44126587, 0.55873413]])

[35]: # Predicted class membership values for the first ten samples based on the average␣
→˓values of all available granularity levels
multi_granular_gfmm_clf.predict_with_membership(Xtest[:10], level=-1)

[35]: array([[0.98879333, 0.94611667],
[0.97816 , 0.82056],
[0.65262667, 1.],
[0.9936 , 0.81736],
[0.8571 , 1.],
[1. , 0.89970333],
[0.93597333, 1.],
[0.32505333, 0.99963333],
[0.82216 , 1.],
[0.78976 , 1.]])

[36]: # Predicted class membership values for the first ten samples at the second granularity␣
→˓level
multi_granular_gfmm_clf.predict_with_membership(Xtest[:10], level=1)

[36]: array([[1. , 0.93534],
[1. , 0.82056],
[0.6388 , 1.],
[1. , 0.84728],
[0.8206 , 1.],
[1. , 0.95502],
[0.91956, 1.],
[0.25156, 1.],
[0.77968, 1.],
[0.78976, 1.]])

362 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Data editing using general fuzzy min-max neural network

This example shows how to using the general fuzzy min-max neural network (GFMMNN) to edit the training data
and remove outliers. There are three different data editing approaches which are presented in [1]. This example uses
a GFMMNN trained by an accelerated agglomerative learning algorithm for demonstration, but any other learning
algorithms of the GFMMNN can be used within data editing functions.

[1] Gabrys, B. (2001). Data editing for neuro-fuzzy classifiers. In Proceedings of the Fourth International ICSC
Symposia on Soft Computing and Intelligent Systems for Industry.

[1]: %matplotlib notebook

[2]: import os
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np

Load training and testing datasets

[3]: # Get the path to the this jupyter notebook file
this_notebook_dir = os.path.dirname(os.path.abspath("__file__"))
this_notebook_dir

[3]: 'C:\\hyperbox-brain\\examples\\other_learning_ability_gfmm'

[4]: # Get the home folder of the hyperbox-brain toolbox
from pathlib import Path
project_dir = Path(this_notebook_dir).parent.parent
project_dir

[4]: WindowsPath('C:/hyperbox-brain')

[5]: # Create the path to the training and testing files
training_file = os.path.join(project_dir, Path("dataset/syn_num_train.csv"))
testing_file = os.path.join(project_dir, Path("dataset/syn_num_test.csv"))

[6]: # Create training and testing data sets
df_train = pd.read_csv(training_file, header=None)
df_test = pd.read_csv(testing_file, header=None)

Xy_train = df_train.to_numpy()
Xy_test = df_test.to_numpy()

Xtr = Xy_train[:, :-1]
ytr = Xy_train[:, -1]

Xtest = Xy_test[:, :-1]
ytest = Xy_test[:, -1]

[7]: from hbbrain.numerical_data.batch_learner.accel_agglo_gfmm import␣
→˓AccelAgglomerativeLearningGFMM

2.8. Tutorials 363

hyperbox-brain, Release 0.1.1

[8]: # Initialise a gfmm model by the accelerated agglomerative learning algorithm
theta = 0.2
gamma = 1
min_simil = 0
simil_measure = 'mid'
is_draw = False

[9]: import matplotlib.pyplot as plt

[10]: # Create a function to show input samples (in this case only two classes)
def show_2d_samples(X, y, title="Input sample"):

colours = ['blue', 'green', 'red', 'black']
labels = ['class 1', 'class 2', 'class 3', 'class 4']
fig1, ax1 = plt.subplots()
classes = np.unique(y)
for index, c in enumerate(classes):

data = X[y == c]
color = colours[index]
label = labels[index]
ax1.scatter(

data[:, 0],
data[:, 1],
color=color,
label=label

)

ax1.set_xlabel('X1')
ax1.set_ylabel('X2')
ax1.title.set_text(title)
ax1.legend(loc='lower right')

fig1.show()

Verify the input data before doing data editing

[11]: # Show the existing training set
show_2d_samples(Xtr, ytr, "Input data set before editing")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[12]: print("Number of input samples before editing = ", Xtr.shape[0])

Number of input samples before editing = 250

364 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Build a GFMMNN model from the original input training data

[13]: agglo2_clf_original_data = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_
→˓simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[14]: agglo2_clf_original_data.fit(Xtr, ytr)

[14]: AccelAgglomerativeLearningGFMM(min_simil=0, theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[15]: agglo2_clf_original_data.draw_hyperbox_and_boundary("The trained GFMM classifier and its␣
→˓decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[16]: print("Number of hyperboxes = ", agglo2_clf_original_data.get_n_hyperboxes())

Number of hyperboxes = 43

Make prediction

[17]: from sklearn.metrics import accuracy_score

[18]: y_pred_original_data = agglo2_clf_original_data.predict(Xtest)
acc = accuracy_score(ytest, y_pred_original_data)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 87.00%

1. Method 1 of Data editing: Using k-nearest neighbors and a leave-one-out scheme.

The first of the data editing procedures examined in this paper follows the general data editing method presented in [2].
It is based on an application of the k-nearest neighbor classification rules within a leave-one-out scheme. To make it
suitable for the GFMM algorithm, the membership function of the GFMMNN acts as the similarity measure utilised
for finding k-nearest neighbours. In this case, the hyperboxes represent individual training data points and the outputs
of the hyperbox layer nodes can be treated as the classification values. The k maximum values from the hyperbox layer
outputs are used together with the above classification rules to decide whether the input is classified correctly or not.

[2] Webb, A. R. (2003). Statistical pattern recognition. John Wiley & Sons.

[19]: # Import the data editing function
from hbbrain.utils.data_editing import data_editing_leave_one_out

[20]: # Initialise a GFMMNN model using the accelerated agglomerative learning algorithm
agglo2_clf = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_simil=min_
→˓simil, simil_measure=simil_measure, is_draw=is_draw)

2.8. Tutorials 365

hyperbox-brain, Release 0.1.1

[21]: # Initialise input paramters of the data editing method
k_neighbors=5 # Using the 5-NN rule for classification
n_iters=100 # Repeat 100 times
n_last_iters=5 # If 5 consecutive iterations not remove any sample, stop the loop
seed=0 # kernel seed for random split data

[22]: # Doing data editing and get the output dataset
Xtr_1, ytr_1 = data_editing_leave_one_out(Xtr, ytr, gfmm_estimator=agglo2_clf, k_
→˓neighbors=k_neighbors, n_iters=n_iters, n_last_iters=n_last_iters, seed=seed)

[23]: print("Number of remaining samples after editing = ", Xtr_1.shape[0])

Number of remaining samples after editing = 183

[24]: # Show the remaining training set
show_2d_samples(Xtr_1, ytr_1, "Input data set after editing by method 1")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Build a GFMMNN model from the remaining training data after editing

[25]: agglo2_clf_editing_method_1 = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma,␣
→˓min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[26]: agglo2_clf_editing_method_1.fit(Xtr_1, ytr_1)

[26]: AccelAgglomerativeLearningGFMM(min_simil=0, theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[27]: agglo2_clf_editing_method_1.draw_hyperbox_and_boundary("The trained GFMM classifier and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[28]: print("Number of hyperboxes = ", agglo2_clf_editing_method_1.get_n_hyperboxes())

Number of hyperboxes = 16

366 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Make prediction

[29]: y_pred_editing_method_1 = agglo2_clf_editing_method_1.predict(Xtest)
acc = accuracy_score(ytest, y_pred_editing_method_1)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 89.60%

2. Method 2 of Data editing: Using repeated two fold cross-validation scheme.

The second data editing procedure is based on the repeated two-fold cross-validation. At each iteration, input data are
randomly split into two separate sets. Next, a fold is used to build a GFMMNN model and the second fold is used to
make prediction. This process is iterated for each fold so that each fold is used to train and validate the model in turn.
After that, the misclassified samples in the validation fold are marked and the random splitting into two separate sets
continues for the original training data set. The process can be repeated a fixed number of times (i.e. 100 times) or
stopped if the last n iterations have not resulted in new samples being marked as misclassified. Only after the multiple
cross-validation process is completed, all the marked samples are removed and the GFMM trained for the edited training
set.

[30]: # Import the data editing function
from hbbrain.utils.data_editing import data_editing_two_fold_cv

[31]: # Initialise a GFMMNN model using the accelerated agglomerative learning algorithm
agglo2_clf = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_simil=min_
→˓simil, simil_measure=simil_measure, is_draw=is_draw)

[32]: # Initialise input paramters of the data editing method
n_iters=100 # Repeat 100 times
n_last_iters=5 # If 5 consecutive iterations not remove any sample, stop the loop
seed=0 # kernel seed for random split data

[33]: # Doing data editing and get the output dataset
Xtr_2, ytr_2 = data_editing_two_fold_cv(Xtr, ytr, gfmm_estimator=agglo2_clf, n_iters=n_
→˓iters, n_last_iters=n_last_iters, seed=seed)

[34]: print("Number of remaining samples after editing = ", Xtr_2.shape[0])

Number of remaining samples after editing = 133

[35]: # Show the remaining training set
show_2d_samples(Xtr_2, ytr_2, "Input data set after editing by method 2")

<IPython.core.display.Javascript object>

2.8. Tutorials 367

hyperbox-brain, Release 0.1.1

<IPython.core.display.HTML object>

Build a GFMMNN model from the remaining training data after editing

[36]: agglo2_clf_editing_method_2 = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma,␣
→˓min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[37]: agglo2_clf_editing_method_2.fit(Xtr_2, ytr_2)

[37]: AccelAgglomerativeLearningGFMM(min_simil=0, theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[38]: agglo2_clf_editing_method_2.draw_hyperbox_and_boundary("The trained GFMM classifier and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[39]: print("Number of hyperboxes = ", agglo2_clf_editing_method_2.get_n_hyperboxes())

Number of hyperboxes = 13

Make prediction

[40]: y_pred_editing_method_2 = agglo2_clf_editing_method_2.predict(Xtest)
acc = accuracy_score(ytest, y_pred_editing_method_2)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 89.80%

3. Method 3 of Data editing: Using repeated two fold cross-validation and a probability of misclas-
sification for each sample.

In the second data editing method, all misclassified samples are removed. However, as it has also been indicated in
the literature, removing all the misclassified samples can sometimes result in dropping whole regions of a class and
essentially overediting the training set. In terms of the GFMM classifier generated for such edited data set, due to
overediting, the classification models have turned out to be too simple to accurately capture the decision boundaries.
Therefore, the third data editing procedure has been designed using an observation that some input data samples are
more consistently used for generation of classifiers during the cross-validation process than others. It also applies to the
misclassified samples, whereas some of the samples will be misclassified consistently while others only occasionally.
The approach based on the rejection of all the samples which have been misclassified at least ones during the multiple
cross-validation does not attempt to take this fact into account in any way. In order to rectify this problem, an approach
which will estimate the probability of every single point in the original training data set to be kept during the multiple
cross-validation. This probability is simply calculated as the ratio of the number of times an input X has been retained
in the validation process of the trained classifier to the total number of repetitions of the two-fold cross validation.

368 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

[41]: # Import the data editing function
from hbbrain.utils.data_editing import data_editing_two_fold_cv_with_probability

[42]: # Initialise a GFMMNN model using the accelerated agglomerative learning algorithm
agglo2_clf = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma, min_simil=min_
→˓simil, simil_measure=simil_measure, is_draw=is_draw)

[43]: # Initialise input paramters of the data editing method
n_iters=100 # Repeat 100 times
min_remained_prob=0.5 # Minimum probability value so that a sample is retained (50% in␣
→˓this case)
seed=0 # kernel seed for random split data

[44]: # Doing data editing and get the output dataset
Xtr_3, ytr_3 = data_editing_two_fold_cv_with_probability(Xtr, ytr, gfmm_estimator=agglo2_
→˓clf, n_iters=n_iters, min_remained_prob=min_remained_prob, seed=seed)

[45]: print("Number of remaining samples after editing = ", Xtr_3.shape[0])

Number of remaining samples after editing = 217

[46]: # Show the remaining training set
show_2d_samples(Xtr_3, ytr_3, "Input data set after editing by method 3")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Build a GFMMNN model from the remaining training data after editing

[47]: agglo2_clf_editing_method_3 = AccelAgglomerativeLearningGFMM(theta=theta, gamma=gamma,␣
→˓min_simil=min_simil, simil_measure=simil_measure, is_draw=is_draw)

[48]: agglo2_clf_editing_method_3.fit(Xtr_3, ytr_3)

[48]: AccelAgglomerativeLearningGFMM(min_simil=0, theta=0.2)

Display decision boundaries among classes if input data are 2-dimensional

[49]: agglo2_clf_editing_method_3.draw_hyperbox_and_boundary("The trained GFMM classifier and␣
→˓its decision boundaries")

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[50]: print("Number of hyperboxes = ", agglo2_clf_editing_method_3.get_n_hyperboxes())

Number of hyperboxes = 20

2.8. Tutorials 369

hyperbox-brain, Release 0.1.1

Make prediction

[51]: y_pred_editing_method_3 = agglo2_clf_editing_method_3.predict(Xtest)
acc = accuracy_score(ytest, y_pred_editing_method_3)
print(f'Accuracy = {acc * 100: .2f}%')

Accuracy = 89.60%

2.8.9 Store and load the trained models

Store and Reload the Trained Models

This example shows how to store a trained hyperbox-based model and reload it to make prediction. This example will
use a random hyperboxes model for illustration.

[1]: from sklearn.datasets import make_classification
from hbbrain.numerical_data.incremental_learner.iol_gfmm import ImprovedOnlineGFMM
from hbbrain.numerical_data.ensemble_learner.random_hyperboxes import␣
→˓RandomHyperboxesClassifier
from hbbrain.utils.model_storage import store_model, load_model

Generate training data

[2]: X, y = make_classification(n_samples=100, n_features=4, n_informative=2, n_redundant=0,␣
→˓random_state=0, shuffle=False)

[3]: # Normalise data into the range of [0, 1]
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X)
X = scaler.transform(X)

Training a random hyperboxes model

[4]: clf = RandomHyperboxesClassifier(base_estimator=ImprovedOnlineGFMM(0.1), n_estimators=10,
→˓ random_state=0).fit(X, y)

Make prediction

[6]: y_pred = clf.predict([[1, 0.6, 0.5, 0.2]])
print("Predicted class for the input patter [1, 0.6, 0.5, 0.2] is %d"%y_pred[0])

Predicted class for the input patter [1, 0.6, 0.5, 0.2] is 1

370 Chapter 2. API Reference

hyperbox-brain, Release 0.1.1

Store the trained model

[7]: store_model(clf, "store_example_model.dummy")

Reload the trained model and make prediction

[8]: clf_load = load_model("store_example_model.dummy")

[9]: y_pred = clf_load.predict([[1, 0.6, 0.5, 0.2]])
print("Predicted class for the input patter [1, 0.6, 0.5, 0.2] is %d"%y_pred[0])

Predicted class for the input patter [1, 0.6, 0.5, 0.2] is 1

2.8. Tutorials 371

hyperbox-brain, Release 0.1.1

372 Chapter 2. API Reference

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

373

hyperbox-brain, Release 0.1.1

374 Chapter 3. Indices and tables

BIBLIOGRAPHY

[1] Simpson, P. (1992). Fuzzy min—max neural networks—Part 1: Classification. IEEE transactions on neural net-
works, 3(5), 776-786.

[1] T.T. Khuat, B. Gabrys, “An in-depth comparison of methods handling mixed-attribute data for general fuzzy
min–max neural network”, Neurocomputing, vol. 464, pp. 175-202, 2021.

[2] P.R. Castillo, J. Cardenosa, “Fuzzy min–max neural networks for categorical data: application to missing data
imputation”, Neural Computing and Applications, vol. 21, pp. 1349–1362, 2012.

[1] Gabrys, B., & Bargiela, A. (2000). General fuzzy min-max neural network for clustering and classification. IEEE
transactions on neural networks, 11(3), 769-783.

[2] Khuat, T. T., & Gabrys, B. (2021). Accelerated learning algorithms of general fuzzy min-max neural network using
a novel hyperbox selection rule. Information Sciences, 547, 887-909.

[1] O. N. Al-Sayaydeh, M. F. Mohammed, E. Alhroob, H. Tao, and C. P. Lim, “A refined fuzzy min–max neural
network with new learning procedures for pattern classification,” IEEE Transactions on Fuzzy Systems, vol. 28,
no. 10, pp. 2480-2494, 2019.

[1] O. N. Al-Sayaydeh, M. F. Mohammed, E. Alhroob, H. Tao, and C. P. Lim, “A refined fuzzy min–max neural
network with new learning procedures for pattern classification,” IEEE Transactions on Fuzzy Systems, vol. 28,
no. 10, pp. 2480-2494, 2019.

[1] B. Gabrys, “Agglomerative learning algorithms for general fuzzy min-max neural network,” Journal of VLSI signal
processing systems for signal, image and video technology, vol. 32, no. 1, pp. 67-82, 2002.

[2] T.T. Khuat and B. Gabrys, “An Online Learning Algorithm for a Neuro-Fuzzy Classifier with Mixed-Attribute
Data,” ArXiv Preprint, no. arXiv:2009.14670, 2020.

[1] T.T. Khuat and B. Gabrys, “Accelerated learning algorithms of general fuzzy min-max neural network using a novel
hyperbox selection rule,” Information Sciences, vol. 547, pp. 887-909, 2021.

[1] T.T. Khuat and B. Gabrys, “Accelerated learning algorithms of general fuzzy min-max neural network using a novel
hyperbox selection rule,” Information Sciences, vol. 547, pp. 887-909, 2021.

[1] T. T. Khuat and B. Gabrys “An Online Learning Algorithm for a Neuro-Fuzzy Classifier with Mixed-Attribute
Data”, ArXiv preprint arXiv:2009.14670, 2020.

[1] T. T. Khuat and B. Gabrys “An in-depth comparison of methods handling mixed-attribute data for general fuzzy
min–max neural network”, Neurocomputing, vol 464, pp. 175-202, 2021.

[1] T. T. Khuat and B. Gabrys “An in-depth comparison of methods handling mixed-attribute data for general fuzzy
min–max neural network”, Neurocomputing, vol 464, pp. 175-202, 2021.

[1] B. Gabrys, “Agglomerative learning algorithms for general fuzzy min-max neural network”, Journal of VLSI signal
processing systems for signal, image and video technology, vol. 32, no. 1, pp. 67-82, 2002.

375

hyperbox-brain, Release 0.1.1

[2] T.T. Khuat and B. Gabrys, “Accelerated learning algorithms of general fuzzy min-max neural network using a novel
hyperbox selection rule,” Information Sciences, vol. 547, pp. 887-909, 2021.

[1] B. Gabrys, “Agglomerative learning algorithms for general fuzzy min-max neural network”, Journal of VLSI signal
processing systems for signal, image and video technology, vol. 32, no. 1, pp. 67-82, 2002.

[2] T.T. Khuat and B. Gabrys, “Accelerated learning algorithms of general fuzzy min-max neural network using a novel
hyperbox selection rule,” Information Sciences, vol. 547, pp. 887-909, 2021.

[1] L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning, vol. 36, no.
1, pp. 85-103, 1999.

[2] L. Breiman, “Bagging predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

[3] B. Gabrys,”Combining neuro-fuzzy classifiers for improved generalisation and reliability”, in Proceedings of the
2002 International Joint Conference on Neural Networks, vol. 3, pp. 2410-2415, 2002.

[1] L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning, vol. 36, no.
1, pp. 85-103, 1999.

[2] L. Breiman, “Bagging predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

[3] B. Gabrys,”Combining neuro-fuzzy classifiers for improved generalisation and reliability”, in Proceedings of the
2002 International Joint Conference on Neural Networks, vol. 3, pp. 2410-2415, 2002.

[1] L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning, vol. 36, no.
1, pp. 85-103, 1999.

[2] L. Breiman, “Bagging predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

[3] B. Gabrys,”Combining neuro-fuzzy classifiers for improved generalisation and reliability”, in Proceedings of the
2002 International Joint Conference on Neural Networks, vol. 3, pp. 2410-2415, 2002.

[1] L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning, vol. 36, no.
1, pp. 85-103, 1999.

[2] L. Breiman, “Bagging predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

[3] B. Gabrys,”Combining neuro-fuzzy classifiers for improved generalisation and reliability”, in Proceedings of the
2002 International Joint Conference on Neural Networks, vol. 3, pp. 2410-2415, 2002.

[1] T. T. Khuat and B. Gabrys, “Random Hyperboxes”, IEEE Transactions on Neural Networks and Learning Systems,
2021.

[1] T. T. Khuat and B. Gabrys “Random Hyperboxes”, IEEE Transactions on Neural Networks and Learning Systems,
2021.

[1] B. Gabrys and A. Bargiela, “General fuzzy min-max neural network for clustering and classification,” IEEE Trans-
actions on Neural Networks, vol. 11, no. 3, pp. 769-783, 2000.

[2] T.T. Khuat and B. Gabrys, “Accelerated learning algorithms of general fuzzy min-max neural network using a novel
hyperbox selection rule,” Information Sciences, vol. 547, pp. 887-909, 2021.

[3] B. Gabrys, “Agglomerative learning algorithms for general fuzzy min-max neural network”, Journal of VLSI Signal
Processing Systems for Signal, Image and Video Technology, vol. 32, no. 1, pp. 67-82, 2002.

[1] T.T. Khuat, F. Chen, and B. Gabrys, “An improved online learning algorithm for general fuzzy min-max neural
network,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1-9, 2020.

[2] T.T. Khuat and B. Gabrys, “Accelerated learning algorithms of general fuzzy min-max neural network using a novel
hyperbox selection rule,” Information Sciences, vol. 547, pp. 887-909, 2021.

[1] P. Simpson, “Fuzzy min—max neural networks—Part 1: Classification,” IEEE Transactions on Neural Networks,
vol. 3, no. 5, pp. 776-786, 1992.

376 Bibliography

hyperbox-brain, Release 0.1.1

[1] M. Mohammed and C. P. Lim, “An enhanced fuzzy min-max neural network for pattern classification,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 26, no. 3, pp. 417-429, 2014.

[1] M. Mohammed and C. P. Lim, “Improving the Fuzzy Min-Max neural network with a k-nearest hyperbox expansion
rule for pattern classification,” Applied Soft Computing, vol. 52, pp. 135-145, 2017.

[1] O. N. Al-Sayaydeh, M. F. Mohammed, E. Alhroob, H. Tao, and C. P. Lim, “A refined fuzzy min-max neural network
with new learning procedures for pattern classification,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 10, pp.
2480-2494, 2019.

[1] T.T. Khuat, F. Chen, and B. Gabrys, “An Effective Multiresolution Hierarchical Granular Representation Based
Classifier Using General Fuzzy Min-Max Neural Network,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 2,
pp. 427-441, 2021.

Bibliography 377

hyperbox-brain, Release 0.1.1

378 Bibliography

PYTHON MODULE INDEX

h
hbbrain.base.base_ensemble, 67
hbbrain.base.base_estimator, 55
hbbrain.base.base_fmnn_estimator, 63
hbbrain.base.base_gfmm_estimator, 58
hbbrain.mixed_data.eiol_gfmm, 68
hbbrain.mixed_data.freq_cat_onln_gfmm, 76
hbbrain.mixed_data.onehot_onln_gfmm, 84
hbbrain.numerical_data.batch_learner.accel_agglo_gfmm,

95
hbbrain.numerical_data.batch_learner.agglo_gfmm,

91
hbbrain.numerical_data.ensemble_learner.base_bagging,

99
hbbrain.numerical_data.ensemble_learner.base_cross_val_bagging,

101
hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes,

126
hbbrain.numerical_data.ensemble_learner.decision_comb_bagging,

103
hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging,

106
hbbrain.numerical_data.ensemble_learner.model_comb_bagging,

110
hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging,

116
hbbrain.numerical_data.ensemble_learner.random_hyperboxes,

122
hbbrain.numerical_data.incremental_learner.efmnn,

142
hbbrain.numerical_data.incremental_learner.fmnn,

140
hbbrain.numerical_data.incremental_learner.iol_gfmm,

135
hbbrain.numerical_data.incremental_learner.knefmnn,

144
hbbrain.numerical_data.incremental_learner.onln_gfmm,

131
hbbrain.numerical_data.incremental_learner.rfmnn,

147
hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm,

151

hbbrain.utils.adjust_hyperbox, 37
hbbrain.utils.dist_metrics, 52
hbbrain.utils.drawing_func, 49
hbbrain.utils.matrix_transformation, 48
hbbrain.utils.membership_calc, 25
hbbrain.utils.model_storage, 54

379

hyperbox-brain, Release 0.1.1

380 Python Module Index

INDEX

A
AccelAgglomerativeLearningGFMM (class in hb-

brain.numerical_data.batch_learner.accel_agglo_gfmm),
95

AgglomerativeLearningGFMM (class in hb-
brain.numerical_data.batch_learner.agglo_gfmm),
91

asym_similarity_val_one_many_hyperboxes() (in
module hbbrain.utils.membership_calc), 25

B
BaseBagging (class in hb-

brain.numerical_data.ensemble_learner.base_bagging),
99

BaseCrossValBagging (class in hb-
brain.numerical_data.ensemble_learner.base_cross_val_bagging),
101

BaseEnsemble (class in hbbrain.base.base_ensemble),
67

BaseFMNNClassifier (class in hb-
brain.base.base_fmnn_estimator), 63

BaseGFMMClassifier (class in hb-
brain.base.base_gfmm_estimator), 58

BaseHyperboxClassifier (class in hb-
brain.base.base_estimator), 55

bitwise_membership() (in module hb-
brain.utils.membership_calc), 25

C
compute_increasing_entropy() (hb-

brain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM
method), 70

compute_similarity_among_categorical_values()
(in module hb-
brain.mixed_data.freq_cat_onln_gfmm),
81

convert_format_missing_input_zero_one() (in
module hbbrain.base.base_gfmm_estimator),
61

convert_granular_theta_to_level()
(in module hb-

brain.numerical_data.multigranular_learner.multi_resolution_gfmm),
160

CrossValRandomHyperboxesClassifier (class in hb-
brain.numerical_data.ensemble_learner.cross_val_random_hyperboxes),
126

D
DecisionCombinationBagging (class in hb-

brain.numerical_data.ensemble_learner.decision_comb_bagging),
103

DecisionCombinationCrossValBagging (class in hb-
brain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging),
106

delay() (hbbrain.base.base_estimator.BaseHyperboxClassifier
method), 56

draw_2D_hyperbox_and_boundary_granular_level()
(hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 153

draw_2D_hyperbox_and_boundary_partitions()
(hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 154

draw_box() (in module hbbrain.utils.drawing_func), 49
draw_box_parallel_coordinate() (in module hb-

brain.utils.drawing_func), 50
draw_decision_boundary_2D() (in module hb-

brain.utils.drawing_func), 50
draw_hyperbox_and_boundary() (hb-

brain.base.base_estimator.BaseHyperboxClassifier
method), 56

E
EFMNNClassifier (class in hb-

brain.numerical_data.incremental_learner.efmnn),
142

estimators_samples_ (hb-
brain.numerical_data.ensemble_learner.base_bagging.BaseBagging
property), 100

estimators_samples_ (hb-
brain.numerical_data.ensemble_learner.base_cross_val_bagging.BaseCrossValBagging
property), 101

estimators_samples_ (hb-
brain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier

381

hyperbox-brain, Release 0.1.1

property), 129
estimators_samples_ (hb-

brain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier
property), 124

ExtendedImprovedOnlineGFMM (class in hb-
brain.mixed_data.eiol_gfmm), 68

F
f_sim_freq_cat_features() (in module hb-

brain.utils.membership_calc), 26
fit() (hbbrain.base.base_estimator.BaseHyperboxClassifier

method), 56
fit() (hbbrain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM

method), 71
fit() (hbbrain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM

method), 78
fit() (hbbrain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM

method), 86
fit() (hbbrain.numerical_data.batch_learner.accel_agglo_gfmm.AccelAgglomerativeLearningGFMM

method), 97
fit() (hbbrain.numerical_data.batch_learner.agglo_gfmm.AgglomerativeLearningGFMM

method), 93
fit() (hbbrain.numerical_data.ensemble_learner.base_bagging.BaseBagging

method), 100
fit() (hbbrain.numerical_data.ensemble_learner.base_cross_val_bagging.BaseCrossValBagging

method), 102
fit() (hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier

method), 129
fit() (hbbrain.numerical_data.ensemble_learner.decision_comb_bagging.DecisionCombinationBagging

method), 105
fit() (hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging.DecisionCombinationCrossValBagging

method), 109
fit() (hbbrain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging

method), 112
fit() (hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging

method), 119
fit() (hbbrain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier

method), 125
fit() (hbbrain.numerical_data.incremental_learner.efmnn.EFMNNClassifier

method), 143
fit() (hbbrain.numerical_data.incremental_learner.fmnn.FMNNClassifier

method), 141
fit() (hbbrain.numerical_data.incremental_learner.iol_gfmm.ImprovedOnlineGFMM

method), 137
fit() (hbbrain.numerical_data.incremental_learner.knefmnn.KNEFMNNClassifier

method), 146
fit() (hbbrain.numerical_data.incremental_learner.onln_gfmm.OnlineGFMM

method), 134
fit() (hbbrain.numerical_data.incremental_learner.rfmnn.RFMNNClassifier

method), 148
fit() (hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM

method), 154
FMNNClassifier (class in hb-

brain.numerical_data.incremental_learner.fmnn),

140
FreqCatOnlineGFMM (class in hb-

brain.mixed_data.freq_cat_onln_gfmm),
76

G
generate_grid_decision_boundary_2D() (in mod-

ule hbbrain.utils.drawing_func), 51
get_cmap() (in module hbbrain.utils.drawing_func), 51
get_membership_extended_iol_gfmm_all_classes()

(in module hbbrain.utils.membership_calc), 26
get_membership_fmnn_all_classes() (in module

hbbrain.utils.membership_calc), 27
get_membership_free_range_gfmm_all_classes()

(in module hbbrain.utils.membership_calc), 28
get_membership_freq_cat_gfmm_all_classes()

(in module hbbrain.utils.membership_calc), 29
get_membership_gfmm_all_classes() (in module

hbbrain.utils.membership_calc), 30
get_membership_onehot_gfmm_all_classes() (in

module hbbrain.utils.membership_calc), 30
get_n_hyperboxes() (hb-

brain.base.base_estimator.BaseHyperboxClassifier
method), 57

get_n_hyperboxes() (hb-
brain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM
method), 71

get_n_hyperboxes() (hb-
brain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM
method), 79

get_n_hyperboxes() (hb-
brain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM
method), 87

get_n_hyperboxes() (hb-
brain.numerical_data.ensemble_learner.base_bagging.BaseBagging
method), 100

get_n_hyperboxes() (hb-
brain.numerical_data.ensemble_learner.base_cross_val_bagging.BaseCrossValBagging
method), 102

get_n_hyperboxes() (hb-
brain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier
method), 130

get_n_hyperboxes() (hb-
brain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier
method), 125

get_n_hyperboxes() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 155

get_n_hyperboxes_at_partition() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 155

get_n_hyperboxes_comb_model() (hb-
brain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging
method), 113

382 Index

hyperbox-brain, Release 0.1.1

get_n_hyperboxes_comb_model() (hb-
brain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging
method), 120

get_sample_explanation() (hb-
brain.base.base_fmnn_estimator.BaseFMNNClassifier
method), 64

get_sample_explanation() (hb-
brain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM
method), 71

get_sample_explanation() (hb-
brain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM
method), 79

get_sample_explanation() (hb-
brain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM
method), 87

get_sample_explanation() (hb-
brain.numerical_data.batch_learner.accel_agglo_gfmm.AccelAgglomerativeLearningGFMM
method), 97

get_sample_explanation() (hb-
brain.numerical_data.batch_learner.agglo_gfmm.AgglomerativeLearningGFMM
method), 93

get_sample_explanation() (hb-
brain.numerical_data.incremental_learner.iol_gfmm.ImprovedOnlineGFMM
method), 138

get_sample_explanation() (hb-
brain.numerical_data.incremental_learner.onln_gfmm.OnlineGFMM
method), 134

get_sample_explanation() (hb-
brain.numerical_data.incremental_learner.rfmnn.RFMNNClassifier
method), 149

get_sample_explanation_granular_level() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 155

granular_learning_phase_1() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 156

granular_learning_phase_2() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 157

H
hashing() (in module hb-

brain.utils.matrix_transformation), 48
hashing_mat() (in module hb-

brain.utils.matrix_transformation), 48
hbbrain.base.base_ensemble

module, 67
hbbrain.base.base_estimator

module, 55
hbbrain.base.base_fmnn_estimator

module, 63
hbbrain.base.base_gfmm_estimator

module, 58
hbbrain.mixed_data.eiol_gfmm

module, 68
hbbrain.mixed_data.freq_cat_onln_gfmm

module, 76
hbbrain.mixed_data.onehot_onln_gfmm

module, 84
hbbrain.numerical_data.batch_learner.accel_agglo_gfmm

module, 95
hbbrain.numerical_data.batch_learner.agglo_gfmm

module, 91
hbbrain.numerical_data.ensemble_learner.base_bagging

module, 99
hbbrain.numerical_data.ensemble_learner.base_cross_val_bagging

module, 101
hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes

module, 126
hbbrain.numerical_data.ensemble_learner.decision_comb_bagging

module, 103
hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging

module, 106
hbbrain.numerical_data.ensemble_learner.model_comb_bagging

module, 110
hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging

module, 116
hbbrain.numerical_data.ensemble_learner.random_hyperboxes

module, 122
hbbrain.numerical_data.incremental_learner.efmnn

module, 142
hbbrain.numerical_data.incremental_learner.fmnn

module, 140
hbbrain.numerical_data.incremental_learner.iol_gfmm

module, 135
hbbrain.numerical_data.incremental_learner.knefmnn

module, 144
hbbrain.numerical_data.incremental_learner.onln_gfmm

module, 131
hbbrain.numerical_data.incremental_learner.rfmnn

module, 147
hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm

module, 151
hbbrain.utils.adjust_hyperbox

module, 37
hbbrain.utils.dist_metrics

module, 52
hbbrain.utils.drawing_func

module, 49
hbbrain.utils.matrix_transformation

module, 48
hbbrain.utils.membership_calc

module, 25
hbbrain.utils.model_storage

module, 54
hyperbox_contraction_efmnn() (in module hb-

brain.utils.adjust_hyperbox), 37

Index 383

hyperbox-brain, Release 0.1.1

hyperbox_contraction_fmnn() (in module hb-
brain.utils.adjust_hyperbox), 38

hyperbox_contraction_freq_cat_gfmm() (in mod-
ule hbbrain.utils.adjust_hyperbox), 39

hyperbox_contraction_rfmnn() (in module hb-
brain.utils.adjust_hyperbox), 39

hyperbox_overlap_test_efmnn() (in module hb-
brain.utils.adjust_hyperbox), 40

hyperbox_overlap_test_fmnn() (in module hb-
brain.utils.adjust_hyperbox), 40

hyperbox_overlap_test_freq_cat_gfmm() (in mod-
ule hbbrain.utils.adjust_hyperbox), 41

I
ImprovedOnlineGFMM (class in hb-

brain.numerical_data.incremental_learner.iol_gfmm),
135

impute_missing_categorical_features() (in mod-
ule hbbrain.mixed_data.eiol_gfmm), 73

impute_missing_value_cat_feature() (in module
hbbrain.mixed_data.onehot_onln_gfmm), 89

initialise_canvas_graph() (hb-
brain.base.base_estimator.BaseHyperboxClassifier
method), 57

is_contain_missing_value() (in module hb-
brain.base.base_gfmm_estimator), 61

is_overlap_cat_features_one_by_one() (in mod-
ule hbbrain.utils.adjust_hyperbox), 42

is_overlap_cat_features_one_vs_many() (in mod-
ule hbbrain.utils.adjust_hyperbox), 42

is_overlap_diff_labels_num_data_rfmnn() (in
module hbbrain.utils.adjust_hyperbox), 43

is_overlap_one_many_diff_label_hyperboxes_mixed_data_general()
(in module hbbrain.utils.adjust_hyperbox), 44

is_overlap_one_many_diff_label_hyperboxes_num_data_general()
(in module hbbrain.utils.adjust_hyperbox), 44

is_overlap_one_many_hyperboxes_num_data_general()
(in module hbbrain.utils.adjust_hyperbox), 45

is_satisfied_cat_expansion_conds() (hb-
brain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM
method), 80

is_satisfied_cat_expansion_conds() (hb-
brain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM
method), 87

is_two_hyperboxes_overlap_num_data_free_range_general()
(in module hbbrain.utils.adjust_hyperbox), 45

is_two_hyperboxes_overlap_num_data_general()
(in module hbbrain.utils.adjust_hyperbox), 46

K
KNEFMNNClassifier (class in hb-

brain.numerical_data.incremental_learner.knefmnn),
144

L
load_model() (in module hbbrain.utils.model_storage),

54
load_multi_models() (in module hb-

brain.utils.model_storage), 54

M
manhattan_distance() (in module hb-

brain.utils.dist_metrics), 52
manhattan_distance_with_missing_val() (in mod-

ule hbbrain.utils.dist_metrics), 52
manhattan_distance_with_missing_val_free_range()

(in module hbbrain.utils.dist_metrics), 53
membership_cat_feature_eiol_gfmm() (in module

hbbrain.utils.membership_calc), 31
membership_func_extended_iol_gfmm() (in module

hbbrain.utils.membership_calc), 32
membership_func_fmnn() (in module hb-

brain.utils.membership_calc), 33
membership_func_free_range_gfmm() (in module

hbbrain.utils.membership_calc), 34
membership_func_freq_cat_gfmm() (in module hb-

brain.utils.membership_calc), 34
membership_func_gfmm() (in module hb-

brain.utils.membership_calc), 35
membership_func_onehot_gfmm() (in module hb-

brain.utils.membership_calc), 36
membership_function_freq_cat() (in module hb-

brain.utils.membership_calc), 37
ModelCombinationBagging (class in hb-

brain.numerical_data.ensemble_learner.model_comb_bagging),
110

ModelCombinationCrossValBagging (class in hb-
brain.numerical_data.ensemble_learner.model_comb_cross_val_bagging),
116

module
hbbrain.base.base_ensemble, 67
hbbrain.base.base_estimator, 55
hbbrain.base.base_fmnn_estimator, 63
hbbrain.base.base_gfmm_estimator, 58
hbbrain.mixed_data.eiol_gfmm, 68
hbbrain.mixed_data.freq_cat_onln_gfmm, 76
hbbrain.mixed_data.onehot_onln_gfmm, 84
hbbrain.numerical_data.batch_learner.accel_agglo_gfmm,

95
hbbrain.numerical_data.batch_learner.agglo_gfmm,

91
hbbrain.numerical_data.ensemble_learner.base_bagging,

99
hbbrain.numerical_data.ensemble_learner.base_cross_val_bagging,

101
hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes,

126

384 Index

hyperbox-brain, Release 0.1.1

hbbrain.numerical_data.ensemble_learner.decision_comb_bagging,
103

hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging,
106

hbbrain.numerical_data.ensemble_learner.model_comb_bagging,
110

hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging,
116

hbbrain.numerical_data.ensemble_learner.random_hyperboxes,
122

hbbrain.numerical_data.incremental_learner.efmnn,
142

hbbrain.numerical_data.incremental_learner.fmnn,
140

hbbrain.numerical_data.incremental_learner.iol_gfmm,
135

hbbrain.numerical_data.incremental_learner.knefmnn,
144

hbbrain.numerical_data.incremental_learner.onln_gfmm,
131

hbbrain.numerical_data.incremental_learner.rfmnn,
147

hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm,
151

hbbrain.utils.adjust_hyperbox, 37
hbbrain.utils.dist_metrics, 52
hbbrain.utils.drawing_func, 49
hbbrain.utils.matrix_transformation, 48
hbbrain.utils.membership_calc, 25
hbbrain.utils.model_storage, 54

MultiGranularGFMM (class in hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm),
151

N
n_cat_features_containing_bit_one() (in module

hbbrain.utils.membership_calc), 37

O
one_hot_encoding_cat_feature() (in module hb-

brain.mixed_data.onehot_onln_gfmm), 89
OneHotOnlineGFMM (class in hb-

brain.mixed_data.onehot_onln_gfmm), 84
OnlineGFMM (class in hb-

brain.numerical_data.incremental_learner.onln_gfmm),
131

ordinal_encode_categorical_features() (in mod-
ule hbbrain.mixed_data.freq_cat_onln_gfmm),
82

overlap_resolving_num_data() (in module hb-
brain.utils.adjust_hyperbox), 47

overlap_resolving_num_data_free_range() (in
module hbbrain.utils.adjust_hyperbox), 47

P
predict() (hbbrain.base.base_fmnn_estimator.BaseFMNNClassifier

method), 65
predict() (hbbrain.base.base_gfmm_estimator.BaseGFMMClassifier

method), 60
predict() (hbbrain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM

method), 72
predict() (hbbrain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM

method), 80
predict() (hbbrain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM

method), 88
predict() (hbbrain.numerical_data.batch_learner.accel_agglo_gfmm.AccelAgglomerativeLearningGFMM

method), 98
predict() (hbbrain.numerical_data.batch_learner.agglo_gfmm.AgglomerativeLearningGFMM

method), 94
predict() (hbbrain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier

method), 130
predict() (hbbrain.numerical_data.ensemble_learner.decision_comb_bagging.DecisionCombinationBagging

method), 105
predict() (hbbrain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging.DecisionCombinationCrossValBagging

method), 109
predict() (hbbrain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging

method), 113
predict() (hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging

method), 120
predict() (hbbrain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier

method), 125
predict() (hbbrain.numerical_data.incremental_learner.iol_gfmm.ImprovedOnlineGFMM

method), 138
predict() (hbbrain.numerical_data.incremental_learner.rfmnn.RFMNNClassifier

method), 149
predict() (hbbrain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM

method), 157
predict_at_partitions() (hb-

brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 157

predict_freq_cat_feature_manhanttan() (in mod-
ule hbbrain.mixed_data.freq_cat_onln_gfmm),
82

predict_onehot_cat_feature_manhanttan()
(in module hb-
brain.mixed_data.onehot_onln_gfmm), 90

predict_proba() (hb-
brain.base.base_fmnn_estimator.BaseFMNNClassifier
method), 65

predict_proba() (hb-
brain.base.base_gfmm_estimator.BaseGFMMClassifier
method), 60

predict_proba() (hb-
brain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM
method), 72

predict_proba() (hb-
brain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM
method), 80

Index 385

hyperbox-brain, Release 0.1.1

predict_proba() (hb-
brain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM
method), 88

predict_proba() (hb-
brain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier
method), 130

predict_proba() (hb-
brain.numerical_data.ensemble_learner.decision_comb_bagging.DecisionCombinationBagging
method), 105

predict_proba() (hb-
brain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging.DecisionCombinationCrossValBagging
method), 109

predict_proba() (hb-
brain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging
method), 114

predict_proba() (hb-
brain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging
method), 120

predict_proba() (hb-
brain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier
method), 125

predict_proba() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 158

predict_proba_all_base_learners() (hb-
brain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging
method), 114

predict_proba_all_base_learners() (hb-
brain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging
method), 120

predict_rfmnn() (in module hb-
brain.numerical_data.incremental_learner.rfmnn),
150

predict_voting() (hb-
brain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging
method), 114

predict_voting() (hb-
brain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging
method), 121

predict_with_centroids() (in module hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm),
160

predict_with_manhattan() (in module hb-
brain.base.base_gfmm_estimator), 61

predict_with_manhattan_fmnn() (in module hb-
brain.base.base_fmnn_estimator), 66

predict_with_manhattan_mixed_data() (in module
hbbrain.mixed_data.eiol_gfmm), 74

predict_with_membership() (hb-
brain.base.base_fmnn_estimator.BaseFMNNClassifier
method), 65

predict_with_membership() (hb-
brain.base.base_gfmm_estimator.BaseGFMMClassifier
method), 61

predict_with_membership() (hb-
brain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM
method), 73

predict_with_membership() (hb-
brain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM
method), 81

predict_with_membership() (hb-
brain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM
method), 88

predict_with_membership() (hb-
brain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier
method), 130

predict_with_membership() (hb-
brain.numerical_data.ensemble_learner.decision_comb_bagging.DecisionCombinationBagging
method), 106

predict_with_membership() (hb-
brain.numerical_data.ensemble_learner.decision_comb_cross_val_bagging.DecisionCombinationCrossValBagging
method), 110

predict_with_membership() (hb-
brain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging
method), 114

predict_with_membership() (hb-
brain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging
method), 121

predict_with_membership() (hb-
brain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier
method), 125

predict_with_membership() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 158

predict_with_membership() (in module hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm),
161

predict_with_membership_all_base_learners()
(hbbrain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging
method), 115

predict_with_membership_all_base_learners()
(hbbrain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging
method), 121

predict_with_probability() (in module hb-
brain.base.base_gfmm_estimator), 62

predict_with_probability_mixed_data() (in mod-
ule hbbrain.mixed_data.eiol_gfmm), 74

R
RandomHyperboxesClassifier (class in hb-

brain.numerical_data.ensemble_learner.random_hyperboxes),
122

remove_contained_hyperboxes() (in module hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm),
162

rfmnn_distance() (in module hb-
brain.utils.dist_metrics), 54

386 Index

hyperbox-brain, Release 0.1.1

RFMNNClassifier (class in hb-
brain.numerical_data.incremental_learner.rfmnn),
147

S
show_sample_explanation() (hb-

brain.base.base_estimator.BaseHyperboxClassifier
method), 57

simple_pruning() (hb-
brain.base.base_fmnn_estimator.BaseFMNNClassifier
method), 66

simple_pruning() (hb-
brain.mixed_data.eiol_gfmm.ExtendedImprovedOnlineGFMM
method), 73

simple_pruning() (hb-
brain.mixed_data.freq_cat_onln_gfmm.FreqCatOnlineGFMM
method), 81

simple_pruning() (hb-
brain.mixed_data.onehot_onln_gfmm.OneHotOnlineGFMM
method), 89

simple_pruning() (hb-
brain.numerical_data.batch_learner.accel_agglo_gfmm.AccelAgglomerativeLearningGFMM
method), 98

simple_pruning() (hb-
brain.numerical_data.batch_learner.agglo_gfmm.AgglomerativeLearningGFMM
method), 94

simple_pruning() (hb-
brain.numerical_data.ensemble_learner.model_comb_bagging.ModelCombinationBagging
method), 115

simple_pruning() (hb-
brain.numerical_data.ensemble_learner.model_comb_cross_val_bagging.ModelCombinationCrossValBagging
method), 121

simple_pruning() (hb-
brain.numerical_data.incremental_learner.iol_gfmm.ImprovedOnlineGFMM
method), 139

simple_pruning() (hb-
brain.numerical_data.incremental_learner.onln_gfmm.OnlineGFMM
method), 135

simple_pruning() (hb-
brain.numerical_data.incremental_learner.rfmnn.RFMNNClassifier
method), 149

simple_pruning() (hb-
brain.numerical_data.multigranular_learner.multi_resolution_gfmm.MultiGranularGFMM
method), 159

simple_pruning_base_estimators() (hb-
brain.numerical_data.ensemble_learner.base_bagging.BaseBagging
method), 100

simple_pruning_base_estimators() (hb-
brain.numerical_data.ensemble_learner.base_cross_val_bagging.BaseCrossValBagging
method), 102

simple_pruning_base_estimators() (hb-
brain.numerical_data.ensemble_learner.cross_val_random_hyperboxes.CrossValRandomHyperboxesClassifier
method), 131

simple_pruning_base_estimators() (hb-

brain.numerical_data.ensemble_learner.random_hyperboxes.RandomHyperboxesClassifier
method), 126

split_matrix() (in module hb-
brain.utils.matrix_transformation), 49

store_model() (in module hb-
brain.utils.model_storage), 54

Index 387

	Introduction
	Installation
	Dependencies
	conda installation
	pip installation
	From source
	Using conda
	Using pip

	Testing

	Features
	Types of input variables
	Incremental learning
	Agglomerative learning
	Ensemble learning
	Multigranularity learning
	Learning from both labelled and unlabelled data
	Ability to directly process missing data
	Continual learning ability of new classes
	Data editing and pruning approaches
	Scikit-learn compatible estimators
	Explainability of predicted results
	Easy to use
	Jupyter notebooks

	Available models
	References

	Quickstart
	Training a model
	In an sklearn Pipeline
	Hyper-parameter search

	Contributing
	Ways to contribute
	Submitting a bug report or a feature request
	How to make a good bug report

	Contributing code
	How to contribute
	Pull request checklist
	Coding guidelines

	Documentation
	Building the documentation
	Guidelines for writing documentation

	Issue Tracker Tags
	Code Review Guidelines
	Communication Guidelines

	About hyperbox-brain
	Ecosystem
	Development team
	Citing
	Logo

	API Reference
	utilitity functions
	utils.membership_calc
	utils.adjust_hyperbox
	utils.matrix_transformation
	utils.drawing_func
	utils.dist_metrics
	utils.model_storage

	base
	base.base_estimator
	base.base_gfmm_estimator
	base.base_fmnn_estimator
	base.base_ensemble

	mixed-data learners
	mixed_data.eiol_gfmm
	mixed_data.freq_cat_onln_gfmm
	mixed_data.onehot_onln_gfmm

	batch learners
	batch_learner.agglo_gfmm
	batch_learner.accel_agglo_gfmm

	ensemble learners
	ensemble_learner.base_bagging
	ensemble_learner.base_cross_val_bagging
	ensemble_learner.decision_comb_bagging
	ensemble_learner.decision_comb_cross_val_bagging
	ensemble_learner.model_comb_bagging
	ensemble_learner.model_comb_cross_val_bagging
	ensemble_learner.random_hyperboxes
	ensemble_learner.cross_val_random_hyperboxes

	incremental learners
	incremental_learner.onln_gfmm
	incremental_learner.iol_gfmm
	incremental_learner.fmnn
	incremental_learner.efmnn
	incremental_learner.knefmnn
	incremental_learner.rfmnn

	multigranular learners
	multigranular_learner.multi_resolution_gfmm

	Tutorials
	Batch learners
	Agglomerative Learning Algorithm for GFMM
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the GFMM classifier using the agglomerative learning algorithm with full similarity matrix
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the GFMM classifier with the agglomerative learning algorithm with full similarity matrix through its init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions

	Accelerated Agglomerative Learning Algorithm for GFMM
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the GFMM classifier using the accelerated agglomerative learning algorithm
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the GFMM classifier with the accelerated agglomerative learning algorithm through its init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions

	Incremental learners
	Original Online Learning Algorithm for GFMM
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the GFMM classifier using the original online learning algorithm
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the GFMM classifier with original online learning algorithm through its init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions
	An example for the wrong prediction case with the demonstration
	Using parallel coordinates. This mode best fits for any dimensions

	Improved Online Learning Algorithm for GFMM
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the GFMM classifier using the improved online learning algorithm
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the GFMM classifier with IOL-GFMM algorithm through its init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Prediction
	Predict the class label for input samples using a probability measure based on the number of samples included inside the winner hyperboxes for the samples located on the decision boundaries
	Predict the class label for input samples using Manhattan distance measure for the samples located on the decision boundaries
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates. For 4 or more dimensions, parallel coordinates should be used
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions

	Fuzzy Min-Max Neural Network with Original Online Learning Algorithm
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the FMNN classifier using the original online learning algorithm
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the Simpson’s FMNN classifier through init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Predicting
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions

	Enhanced Online Learning Algorithm for FMNN
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the FMNN using the enhanced online learning algorithm
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the EFMNN through its init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions

	Enhanced Online Learning Algorithm with K-nearest Hyperboxes Selection for FMNN
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the Simpson’s FMNN classifier using the enhanced online learning algorithm with k-nearest hyperboxes selection
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the KNEFMNN classifier through its init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions

	Refined Online Learning Algorithm for FMNN
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the RFMNN classifier
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program

	2. Using the RFMNN classifier through its init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes if input data are 2-dimensional
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates. This mode best fits for any dimensions

	Multigranular learners
	Multi-resolution Hierarchical Granular Representation based Classifier using GFMM
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the multi-resolution hierarchical granular representation based classifier using the general fuzzy min-max neural network
	Run the found file by showing the execution directions
	Create the path to training and testing datasets stored in the dataset folder
	Run a demo program
	If the argument ‘validation_file’ gets the value of validation file path, the pruning procedure will be used after merging all hyperboxes from base learners. Otherwise, the pruning procedure will not be used.

	2. Using the multi-resolution hierarchical granular representation based classifier using general fuzzy min-max neural network through init, fit, and predict functions
	Create training and testing data sets
	Initializing parameters
	Training
	The code below shows how to display decision boundaries among classes at a given granularity level if input data are 2-dimensional
	Prediction
	Using all GFMM models from all granularity level to make the final prediction using majority voting, in which each granularity level contributes one predicted result for each input pattern and the final predicted result is the class getting most of votes from the models at all granularity levels.
	Use a certain granularity level to make prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class using the model at a given granularity level
	Show input sample and hyperboxes belonging to each class. In 2D, we can show rectangles or use parallel coordinates
	Using rectangles to show explanations
	Using parallel coordinates to show explanations. This method can be used for any number of dimensions

	Ensemble learners
	Decision-level Bagging of Hyperbox-based Models
	Load dataset.
	1. Using random subsampling to generate training sets for various base learners
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	2. Using random undersampling to generate class-balanced training sets for various base learners
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	Decision-level Bagging of Hyperbox-based Models with Hyper-parameter Optimisation
	Load dataset.
	1. Using random subsampling to generate training sets for various base learners
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	2. Using random undersampling to generate class-balanced training sets for various base learners
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	Model-level Bagging of Hyperbox-based Models
	Load dataset.
	1. Using random subsampling to generate training sets for various base learners
	a. Training without pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model
	b. Training with pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model

	2. Using random undersampling to generate class-balanced training sets for various base learners
	a. Training without pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model
	b. Training with pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model

	Model-level Bagging of Hyperbox-based Learners with Hyper-parameter Optimisation
	Load dataset. This example will use the breast cancer dataset available in sklearn to demonstrate how to use this ensemble classifier.
	1. Using random subsampling to generate training sets for various base learners
	a. Training without pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model
	b. Training with pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model

	2. Using random undersampling to generate class-balanced training sets for various base learners
	a. Training without pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model
	b. Training with pruning for base learners
	Prediction
	Using majority voting from predicted results of all base learners
	Using the final combined single model to make prediction
	Apply pruning for the final combined model
	Prediction after doing a pruning procedure for the combined single model

	Random Hyperboxes
	Load dataset.
	1. Using random subsampling to generate training sets for various base learners
	a. The number of features used in each base learner is different and is bounded by a maximum number of features
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure
	b. The number of features used in each base learner is the same and is equal to the given maximum number of features
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	2. Using random undersampling to generate class-balanced training sets for various base learners
	a. The number of features used in each base learner is different and is bounded by a maximum number of features
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure
	b. The number of features used in each base learner is the same and is equal to the given maximum number of features
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	Random Hyperboxes with Hyper-parameter Optimisation for Base Learners
	Load dataset.
	1. Using random subsampling to generate training sets for various base learners
	a. The number of features used in each base learner is different and is bounded by a maximum number of features
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure
	b. The number of features used in each base learner is the same and is equal to the given maximum number of features
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	2. Using random undersampling to generate class-balanced training sets for various base learners
	a. The number of features used in each base learner is different and is bounded by a maximum number of features
	Training
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure
	b. The number of features used in each base learner is the same and is equal to the given maximum number of features
	Prediction
	Apply pruning for base learners
	Prediction after doing a pruning procedure

	Mixed data learners
	Enhanced Improved Online Learning Algorithm with Mixed-Attribute Data for GFMM
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the GFMM classifier using the extended improved online learning algorithm for mixed attribute data
	Run the found file by showing the execution directions
	Create the path to mixed-attribute training and testing datasets stored in the dataset folder.
	Run a demo program

	2. Using the EIOL-GFMM algorithm to train a GFMM classifier for mixed-attribute data through its init, fit, and predict functions
	Create mixed attribute training, validation, and testing data sets.
	Initializing parameters
	Indicate the indices of categorical features in the training data
	a. Training the EIOL-GFMM algorithm with the categorical feature expansion condition regarding the maximum entropy changing threshold be applied for every categorical dimension
	Training
	Prediction
	Predict the class label for input samples using a probability measure based on the number of samples included inside the winner hyperboxes for the samples located on the decision boundaries
	Predict the class label for input samples using Manhattan distance measure (applied only for continuous features) for the samples located on the decision boundaries
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Apply pruning for the trained classifier
	Make prediction after pruning
	Predict the class label for input samples using a probability measure based on the number of samples included inside the winner hyperboxes for the samples located on the decision boundaries
	Predict the class label for input samples using Manhattan distance measure (applied only for continuous features) for the samples located on the decision boundaries
	b. Training the EIOL-GFMM algorithm with the categorical feature expansion condition regarding the maximum entropy changing threshold be applied for the average changing entropy value over all categorical features.
	Training
	Prediction
	Predict the class label for input samples using a probability measure based on the number of samples included inside the winner hyperboxes for the samples located on the decision boundaries
	Predict the class label for input samples using Manhattan distance measure (applied only for continuous features) for the samples located on the decision boundaries
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Apply pruning for the trained classifier
	Make prediction after pruning
	Predict the class label for input samples using a probability measure based on the number of samples included inside the winner hyperboxes for the samples located on the decision boundaries
	Predict the class label for input samples using Manhattan distance measure (applied only for continuous features) for the samples located on the decision boundaries

	Batch-Incremental Learning Algorithm for GFMM using Probability-based Measures for Categorical Features
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the GFMM classifier using the online learning algorithm with the cateogical feature similarity measure based on the frequence of occurence of categorical values for mixed attribute features
	Run the found file by showing the execution directions
	Create the path to mixed-attribute training and testing datasets stored in the dataset folder.
	Run a demo program

	2. Using the FreqCatOnlineGFMM algorithm to train a GFMM classifier for mixed-attribute data through its init, fit, and predict functions
	Create mixed attribute training, validation, and testing data sets.
	Initializing parameters
	Indicate the indices of categorical features in the training data
	Training
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Apply pruning for the trained classifier
	Make prediction after pruning

	Batch-Incremental Learning Algorithm for GFMM using One-hot Encoding for Categorical Features
	1. Execute directly from the python file
	Get the path to the this jupyter notebook file
	Get the home folder of the Hyperbox-Brain project
	Create the path to the Python file containing the implementation of the GFMM classifier using the online learning algorithm with one-hot encoding for categorical values in mixed attribute features
	Run the found file by showing the execution directions
	Create the path to mixed-attribute training and testing datasets stored in the dataset folder.
	Run a demo program

	2. Using the OneHotOnlineGFMM algorithm to train a GFMM classifier for mixed-attribute data through its init, fit, and predict functions
	Create mixed attribute training, validation, and testing data sets.
	Initializing parameters
	Indicate the indices of categorical features in the training data
	Training
	Prediction
	Explaining the predicted result for the input sample by showing membership values and hyperboxes for each class
	Apply pruning for the trained classifier
	Make prediction after pruning

	Integration with sklearn pipeline
	Integration of Single Hyperbox-based Models with Sklearn Pipeline and Hyperopt
	Load Iris dataset and prepare training and testing sets
	Create a pipeline of pre-processing method (i.e., normalization of data in the range of [0, 1]) and a GFMM classifier.
	Training
	Testing
	The example below shows how to use the HyperOpt library in combination with PipleLine and Cross-validation to find the best model

	Define search space
	Defining model
	Running optimization

	Integration of Ensemble Models with Sklearn Pipeline
	Load dataset.
	Create a pipeline of pre-processing method (i.e., normalization of data in the range of [0, 1]) and a Random hyperboxes model.

	Training
	Prediction

	Integration with sklearn hyperparameter optimisation
	Integration of Single Hyperbox-based Estimators with Grid-Search and Random-Search in sklearn
	Load Iris dataset, normalize it into the range of [0, 1] and build training and testing datasets
	1. Using Grid Search with 5-fold cross-validation
	2. Using Random Search with 5-fold cross-validation
	Try to show explanation for an input sample

	Show explanation results by parallel coordinates

	Integration of Algorithms for Mixed-Attribute Data with Hyper-parameter Optimisation in Sklearn
	Load dataset.
	Using Random Search with 5-fold cross-validation

	Integration of Ensemble Models with Hyper-parameter Optimisation in Sklearn
	Load dataset, normalize numerical features into the range of [0, 1] and build training and testing datasets.
	Using Random Search with 5-fold cross-validation.

	Other learning abilities of GFMM models
	Learning from labelled and unlabelled data using GFMM
	Loading the labelled and unlabelled samples from an example dataset in the folder ‘dataset’
	Showing samples corresponding to missing values and class labels
	1. Original incremental learning algorithm for GFMM
	1.1 Training a GFMM model using the original incremental learning algorithm on a fully labelled training set
	Display decision boundaries among classes if input data are 2-dimensional
	Prediction
	1.2 Training a GFMM model using the original incremental learning algorithm on a labelled and unlabelled training set
	Display decision boundaries among classes if input data are 2-dimensional
	Prediction
	2. Improved online learning algorithm for GFMM (IOL-GFMM)
	2.1 Training a GFMM model using the improved online learning algorithm on a fully labelled training set
	Display decision boundaries among classes if input data are 2-dimensional
	Prediction
	2.2 Training a GFMM model using the improved online learning algorithm on a labelled and unlabelled training set
	Display decision boundaries among classes if input data are 2-dimensional
	Prediction
	3. Accelerated agglomerative learning algorithm for GFMM (AGGLO-2)
	3.1 Training a GFMM model using the accelerated agglomerative learning algorithm on a fully labelled training set
	Display decision boundaries among classes if input data are 2-dimensional
	Prediction
	3.2 Training a GFMM model using the accelerated agglomerative learning algorithm on a mixed labelled and unlabelled training set
	Prediction
	4. Agglomerative learning algorithm will a full similarity matrix for GFMM (AGGLO-SM)
	4.1 Training a GFMM model using the agglomerative learning algorithm with a full similarity matrix on a fully labelled training set
	Display decision boundaries among classes if input data are 2-dimensional
	Prediction
	4.2 Training a GFMM model using the agglomerative learning algorithm with a full similarity matrix on a mixed labelled and unlabelled training set
	Display decision boundaries among classes if input data are 2-dimensional
	Prediction

	Continuous learning from a trained hyperbox-based model
	Load training and testing datasets
	1. Training a General fuzzy min-max neural network model using an incremental learning algorithm
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction
	Store the trained model
	Reload the trained model and make prediction
	Continue to train the deployed model using another training set
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction

	2. Training a General fuzzy min-max neural network model using an agglomerative learning algorithm
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction
	Store the trained model
	Reload the trained model and make prediction
	Continue to train the deployed model using another training set
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction

	Learning from data sets with missing values of features
	Load training and testing datasets
	1. Original online learning algorithm (Onln-GFMM) for General Fuzzy Min-Max Neural Network
	Training a GFMMNN model on the data set without missing feature values
	Training a GFMMNN model on the data set WITH missing feature values

	Make prediction
	2. Improved online learning algorithm (IOL-GFMM) for General Fuzzy Min-Max Neural Network
	Training a GFMMNN model on the data set without missing feature values
	Training a GFMMNN model on the data set WITH missing feature values
	Make prediction
	Using membership value to show the prediction for the testing data with missing features values
	3. Accelerated agglomerative learning algorithm (AGGLO-2) for General Fuzzy Min-Max Neural Network
	Training a GFMMNN model on the data set without missing feature values
	Training a GFMMNN model on the data set WITH missing feature values
	Make prediction
	Using membership value to show the prediction for the testing data with missing features values
	4. Agglomerative learning algorithm with full similarity matrix (AGGLO-SM) for General Fuzzy Min-Max Neural Network
	Training a GFMMNN model on the data set without missing feature values
	Training a GFMMNN model on the data set WITH missing feature values
	Make prediction
	Using membership value to show the prediction for the testing data with missing features values

	Using probability and membership values of classes for prediction
	Load training and testing datasets
	1. Original online learning algorithm for General fuzzy min-max neural network (Onln-GFMM)
	Train a model
	Make prediction

	2. Accelerated agglomerative learning algorithm for General fuzzy min-max neural network (AGGLO-2)
	Train a model
	Make prediction

	3. Original online learning algorithm for Simpson’s Fuzzy min-max neural network (FMNN)
	Train a model
	Make prediction

	4. Bagging of base general fuzzy min-max neural networks trained by the original online learning algorithm
	Train a bagging model
	Make prediction

	5. Multi-resolution Hierarchical Granular Representation based Classifier using GFMM
	Training a multigranular model
	Make prediction

	Data editing using general fuzzy min-max neural network
	Load training and testing datasets
	Verify the input data before doing data editing
	Build a GFMMNN model from the original input training data
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction
	1. Method 1 of Data editing: Using k-nearest neighbors and a leave-one-out scheme.
	Build a GFMMNN model from the remaining training data after editing
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction
	2. Method 2 of Data editing: Using repeated two fold cross-validation scheme.
	Build a GFMMNN model from the remaining training data after editing
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction
	3. Method 3 of Data editing: Using repeated two fold cross-validation and a probability of misclassification for each sample.
	Build a GFMMNN model from the remaining training data after editing
	Display decision boundaries among classes if input data are 2-dimensional
	Make prediction

	Store and load the trained models
	Store and Reload the Trained Models
	Generate training data
	Training a random hyperboxes model
	Make prediction
	Store the trained model
	Reload the trained model and make prediction

	Indices and tables
	Bibliography
	Python Module Index
	Index

